Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Teeny-tiny X-Ray Vision

Abstract:
The tubes that power X-ray machines are shrinking, improving the clarity and detail of their Superman-like vision. A team of nanomaterial scientists, medical physicists, and cancer biologists at the University of North Carolina has developed new lower-cost X-ray tubes packed with sharp-tipped carbon nanotubes for cancer research and treatment.

Teeny-tiny X-Ray Vision

University of North Carolina | Posted on August 3rd, 2009

The tubes that power X-ray machines are shrinking, improving the clarity and detail of their Superman-like vision. A team of nanomaterial scientists, medical physicists, and cancer biologists at the University of North Carolina has developed new lower-cost X-ray tubes packed with sharp-tipped carbon nanotubes for cancer research and treatment.

The tiny technology, presented at this year's meeting of the American Association of Physicists in Medicine in Anaheim, California, is being developed to image human breast tissue, laboratory animals, and cancer patients under radiotherapy treatment, and to irradiate cells with more control than previously possible with conventional X-ray tubes.

The X-ray machine used in a typical hospital today is powered by a "hot" vacuum tube that dates back to the beginning of the 20th century. Inside the tube, a tungsten metal filament -- similar to the one that creates light in an incandescent bulb -- is heated to a temperature of 1,000 degrees Celsius. The heat releases electrons, which accelerate in the X-ray tube and strike a piece of metal, the anode, creating X-rays.

Sha Chang, Otto Zhou, and colleagues that University of North Carolina have developed cold X-ray tubes that replace the tungsten filament with carbon nanotubes packed like blades of tiny grass. Electrons are instantly emitted from the sharp tips of the nanotubes when a voltage is applied. "Think of each nanotube as a lightning rod on top of a building. The high electric field at the tip of the lightning rod draws the electric current from the cloud. Carbon nanotubes emit electrons using a similar principle," said Chang.

The group used the nanotubes to build micro-sized scanners and image the interior anatomy of small laboratory animals. Existing X-ray technologies have difficulty compensating for the blur caused by the creature's breathing. Slow mechanical shutters that open and close to block and release the radiation are used to time X-ray pulses to correspond with breath, but their speed is inadequate for small animals because of the creatures' extremely fast breathing and cardiac motion. Chang and Zhou have demonstrated that their carbon nanotubes, which can be turned on and off instantaneously, are fairly easy to synch up to equipment that monitors small animal's breathing or heart rate.

The nanotube devices may also improve human cancer imaging and treatment. CT scanners currently in use check for breast cancer by swinging a single large X-ray source around the target to take a thousand pictures over the course of minutes. Using many nanotube X-ray sources lined up in an array instead, breast imaging can be done within few seconds by electronically turning on and off each of the X-ray sources without any physical motion. This fast "tomosynthesis" imaging improves patient comfort and boosts image quality by reducing motion blur. Using 25 simultaneous beams, the team produced images of growths in breast tissue at nearly twice the resolution of commercial scanners on the market.

This summer Chang's team will conduct a clinical test of a first generation nanotube-based imaging system for high-speed image-guided radiotherapy. The research image system is developed by Siemens and Xinray Inc., a joint venture between Siemens and a University of North Carolina startup company Xintech Inc.

The talk "Carbon Nanotube Field Emission Based Imaging and Irradiation Technology Development for Basic Cancer Research" will be at 10:55 a.m. on Tuesday, July 28 in Ballroom D.
See: www.aapm.org/meetings/09AM/PRAbs.asp?mid=42&aid=11909

PRESS REGISTRATION
Journalists are welcome to attend the conference free of charge. AAPM will grant complimentary registration to any full-time or freelance journalist working on assignment. The Press guidelines are posted at: www.aapm.org/meetings/09AM/VirtualPressRoom/.

If you are a reporter and would like to attend, or if you have questions about the meeting, contact Jason Bardi 858-775-4080).

RELATED LINKS
- Main Meeting Web site: www.aapm.org/meetings/09AM/.
- Search Meeting Abstracts: www.aapm.org/meetings/09AM/prsearch.asp?mid=42.
- Meeting program: www.aapm.org/meetings/09AM/MeetingProgram.asp.
- AAPM home page: www.aapm.org.
- Background article about how medical physics has revolutionized medicine:
www.newswise.com/articles/view/538208/.


####

About American Institute of Physics (AIP)
If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.

ABOUT AAPM
The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings. See: www.aapm.org.

For more information, please click here

Contacts:
Jason Bardi

858-775-4080

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Possible Futures

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Nanomedicine

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Announcements

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Tools

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

New TriboLab CMP Provides Cost-Effective Characterization of Chemical Mechanical Wafer Polishing Processes: Bruker Updates Industry-Standard CP-4 Platform for Most Flexible and Reliable Testing June 27th, 2017

Nanobiotechnology

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project