Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Teeny-tiny X-Ray Vision

Abstract:
The tubes that power X-ray machines are shrinking, improving the clarity and detail of their Superman-like vision. A team of nanomaterial scientists, medical physicists, and cancer biologists at the University of North Carolina has developed new lower-cost X-ray tubes packed with sharp-tipped carbon nanotubes for cancer research and treatment.

Teeny-tiny X-Ray Vision

University of North Carolina | Posted on August 3rd, 2009

The tubes that power X-ray machines are shrinking, improving the clarity and detail of their Superman-like vision. A team of nanomaterial scientists, medical physicists, and cancer biologists at the University of North Carolina has developed new lower-cost X-ray tubes packed with sharp-tipped carbon nanotubes for cancer research and treatment.

The tiny technology, presented at this year's meeting of the American Association of Physicists in Medicine in Anaheim, California, is being developed to image human breast tissue, laboratory animals, and cancer patients under radiotherapy treatment, and to irradiate cells with more control than previously possible with conventional X-ray tubes.

The X-ray machine used in a typical hospital today is powered by a "hot" vacuum tube that dates back to the beginning of the 20th century. Inside the tube, a tungsten metal filament -- similar to the one that creates light in an incandescent bulb -- is heated to a temperature of 1,000 degrees Celsius. The heat releases electrons, which accelerate in the X-ray tube and strike a piece of metal, the anode, creating X-rays.

Sha Chang, Otto Zhou, and colleagues that University of North Carolina have developed cold X-ray tubes that replace the tungsten filament with carbon nanotubes packed like blades of tiny grass. Electrons are instantly emitted from the sharp tips of the nanotubes when a voltage is applied. "Think of each nanotube as a lightning rod on top of a building. The high electric field at the tip of the lightning rod draws the electric current from the cloud. Carbon nanotubes emit electrons using a similar principle," said Chang.

The group used the nanotubes to build micro-sized scanners and image the interior anatomy of small laboratory animals. Existing X-ray technologies have difficulty compensating for the blur caused by the creature's breathing. Slow mechanical shutters that open and close to block and release the radiation are used to time X-ray pulses to correspond with breath, but their speed is inadequate for small animals because of the creatures' extremely fast breathing and cardiac motion. Chang and Zhou have demonstrated that their carbon nanotubes, which can be turned on and off instantaneously, are fairly easy to synch up to equipment that monitors small animal's breathing or heart rate.

The nanotube devices may also improve human cancer imaging and treatment. CT scanners currently in use check for breast cancer by swinging a single large X-ray source around the target to take a thousand pictures over the course of minutes. Using many nanotube X-ray sources lined up in an array instead, breast imaging can be done within few seconds by electronically turning on and off each of the X-ray sources without any physical motion. This fast "tomosynthesis" imaging improves patient comfort and boosts image quality by reducing motion blur. Using 25 simultaneous beams, the team produced images of growths in breast tissue at nearly twice the resolution of commercial scanners on the market.

This summer Chang's team will conduct a clinical test of a first generation nanotube-based imaging system for high-speed image-guided radiotherapy. The research image system is developed by Siemens and Xinray Inc., a joint venture between Siemens and a University of North Carolina startup company Xintech Inc.

The talk "Carbon Nanotube Field Emission Based Imaging and Irradiation Technology Development for Basic Cancer Research" will be at 10:55 a.m. on Tuesday, July 28 in Ballroom D.
See: www.aapm.org/meetings/09AM/PRAbs.asp?mid=42&aid=11909

PRESS REGISTRATION
Journalists are welcome to attend the conference free of charge. AAPM will grant complimentary registration to any full-time or freelance journalist working on assignment. The Press guidelines are posted at: www.aapm.org/meetings/09AM/VirtualPressRoom/.

If you are a reporter and would like to attend, or if you have questions about the meeting, contact Jason Bardi 858-775-4080).

RELATED LINKS
- Main Meeting Web site: www.aapm.org/meetings/09AM/.
- Search Meeting Abstracts: www.aapm.org/meetings/09AM/prsearch.asp?mid=42.
- Meeting program: www.aapm.org/meetings/09AM/MeetingProgram.asp.
- AAPM home page: www.aapm.org.
- Background article about how medical physics has revolutionized medicine:
www.newswise.com/articles/view/538208/.


####

About American Institute of Physics (AIP)
If you ever had a mammogram, ultrasound, X-ray, MRI, PET scan, or known someone treated for cancer, chances are reasonable that a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists help to develop new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.

ABOUT AAPM
The American Association of Physicists in Medicine (AAPM) is a scientific, educational, and professional organization of more than 6,000 medical physicists. Headquarters are located at the American Center for Physics in College Park, MD. Publications include a scientific journal ("Medical Physics"), technical reports, and symposium proceedings. See: www.aapm.org.

For more information, please click here

Contacts:
Jason Bardi

858-775-4080

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanomedicine

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Nanobiotechnology

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic