Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Breaking the law, at the nanoscale

Professor Gang Chen with the vacuum chamber used in this research.
Professor Gang Chen with the vacuum chamber used in this research.

Abstract:
Bringing objects close together can boost radiation heat transfer, according to new study that shows breakdown in Planck's law

Breaking the law, at the nanoscale

Cambridge, MA | Posted on July 30th, 2009

A well-established physical law describes the transfer of heat between two objects, but some physicists have long predicted that the law should break down when the objects are very close together. Scientists had never been able to confirm, or measure, this breakdown in practice. For the first time, however, MIT researchers have achieved this feat, and determined that the heat transfer can be 1,000 times greater than the law predicts.

The new findings could lead to significant new applications, including better design of the recording heads of the hard disks used for computer data storage, and new kinds of devices for harvesting energy from heat that would otherwise be wasted.

Planck's blackbody radiation law, formulated in 1900 by German physicist Max Planck, describes how energy is dissipated, in the form of different wavelengths of radiation, from an idealized non-reflective black object, called a blackbody. The law says that the relative thermal emission of radiation at different wavelengths follows a precise pattern that varies according to the temperature of the object. The emission from a blackbody is usually considered as the maximum that an object can radiate.

The law works reliably in most cases, but Planck himself had suggested that when objects are very close together, the predictions of his law would break down. But actually controlling objects to maintain the tiny separations required to demonstrate this phenomenon has proved incredibly difficult.

"Planck was very careful, saying his theory was only valid for large systems," explains Gang Chen, MIT's Carl Richard Soderberg Professor of Power Engineering and director of the Pappalardo Micro and Nano Engineering Laboratories. "So he kind of anticipated this [breakdown], but most people don't know this."

Part of the problem in measuring the way energy is radiated when objects are very close is the mechanical difficulty of maintaining two objects in very close proximity, without letting them actually touch. Chen and his team, graduate student Sheng Shen and Columbia University Professor Arvind Narayaswamy, solved this problem in two ways, as described in a paper to be published in the August issue of the journal Nano Letters (available now online). First, instead of using two flat surfaces and trying to maintain a tiny gap between them, they used a flat surface next to a small round glass bead, whose position is easier to control. "If we use two parallel surfaces, it is very hard to push to nanometer scale without some parts touching each other," Chen explains, but by using a bead there is just a single point of near-contact, which is much easier to maintain. Then, they used the technology of the bi-metallic cantilever from an atomic-force microscope to measure the temperature changes with great precision.

"We tried for many years doing it with parallel plates," Chen says. But with that method, they were unable to sustain separations of closer than about a micron (one millionth of a meter). By using the glass (silica) beads, they were able to get separations as small as 10 nanometers (10 billionths of a meter, or one-hundredth the distance achieved before), and are now working on getting even closer spacings.

Professor Sir John Pendry of Imperial College London, who has done extensive work in this field, calls the results "very exciting," noting that theorists have long predicted such a breakdown in the formula and the activation of a more powerful mechanism.

"Experimental confirmation has proved elusive because of the extreme difficulty in measuring temperature differences over very small distances," Pendry says. "Gang Chen's experiments provide a beautiful solution to this difficulty and confirm the dominant contribution of near field effects to heat transfer."

In today's magnetic data recording systems - such as the hard disks used in computers - the spacing between the recording head and the disk surface is typically in the 5 to 6 nanometer range, Chen says. The head tends to heat up, and researchers have been looking for ways to manage the heat or even exploit the heating to control the gap. "It's a very important issue for magnetic storage," he says. Such applications could be developed quite rapidly, he says, and some companies have already shown a strong interest in this work

The new findings could also help in the development of new photovoltaic energy conversion devices to harness photons emitted by a heat source, called thermophovoltaic, Chen says. "The high photon flux can potentially enable higher efficiency and energy density thermophovoltaic energy converters, and new energy conversion devices," he says.

The new findings could have "a broad impact," says Shen. People working with devices using small separations will now have a clear understanding that Planck's law "is not a fundamental limitation," as many people now think, he says. But further work is needed to explore even closer spacings, Chen says, because "we don't know exactly what the limit is yet" in terms of how much heat can be dissipated in closely spaced systems. "Current theory will not be valid once we push down to 1 nanometer spacing."

And in addition to practical applications, he says, such experiments "might provide a useful tool to understand some basic physics."

The work was funded by the U.S. Department of Energy and the Air Force Office of Scientific Research.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Memory Technology

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project