Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breaking the law, at the nanoscale

Professor Gang Chen with the vacuum chamber used in this research.
Professor Gang Chen with the vacuum chamber used in this research.

Abstract:
Bringing objects close together can boost radiation heat transfer, according to new study that shows breakdown in Planck's law

Breaking the law, at the nanoscale

Cambridge, MA | Posted on July 30th, 2009

A well-established physical law describes the transfer of heat between two objects, but some physicists have long predicted that the law should break down when the objects are very close together. Scientists had never been able to confirm, or measure, this breakdown in practice. For the first time, however, MIT researchers have achieved this feat, and determined that the heat transfer can be 1,000 times greater than the law predicts.

The new findings could lead to significant new applications, including better design of the recording heads of the hard disks used for computer data storage, and new kinds of devices for harvesting energy from heat that would otherwise be wasted.

Planck's blackbody radiation law, formulated in 1900 by German physicist Max Planck, describes how energy is dissipated, in the form of different wavelengths of radiation, from an idealized non-reflective black object, called a blackbody. The law says that the relative thermal emission of radiation at different wavelengths follows a precise pattern that varies according to the temperature of the object. The emission from a blackbody is usually considered as the maximum that an object can radiate.

The law works reliably in most cases, but Planck himself had suggested that when objects are very close together, the predictions of his law would break down. But actually controlling objects to maintain the tiny separations required to demonstrate this phenomenon has proved incredibly difficult.

"Planck was very careful, saying his theory was only valid for large systems," explains Gang Chen, MIT's Carl Richard Soderberg Professor of Power Engineering and director of the Pappalardo Micro and Nano Engineering Laboratories. "So he kind of anticipated this [breakdown], but most people don't know this."

Part of the problem in measuring the way energy is radiated when objects are very close is the mechanical difficulty of maintaining two objects in very close proximity, without letting them actually touch. Chen and his team, graduate student Sheng Shen and Columbia University Professor Arvind Narayaswamy, solved this problem in two ways, as described in a paper to be published in the August issue of the journal Nano Letters (available now online). First, instead of using two flat surfaces and trying to maintain a tiny gap between them, they used a flat surface next to a small round glass bead, whose position is easier to control. "If we use two parallel surfaces, it is very hard to push to nanometer scale without some parts touching each other," Chen explains, but by using a bead there is just a single point of near-contact, which is much easier to maintain. Then, they used the technology of the bi-metallic cantilever from an atomic-force microscope to measure the temperature changes with great precision.

"We tried for many years doing it with parallel plates," Chen says. But with that method, they were unable to sustain separations of closer than about a micron (one millionth of a meter). By using the glass (silica) beads, they were able to get separations as small as 10 nanometers (10 billionths of a meter, or one-hundredth the distance achieved before), and are now working on getting even closer spacings.

Professor Sir John Pendry of Imperial College London, who has done extensive work in this field, calls the results "very exciting," noting that theorists have long predicted such a breakdown in the formula and the activation of a more powerful mechanism.

"Experimental confirmation has proved elusive because of the extreme difficulty in measuring temperature differences over very small distances," Pendry says. "Gang Chen's experiments provide a beautiful solution to this difficulty and confirm the dominant contribution of near field effects to heat transfer."

In today's magnetic data recording systems - such as the hard disks used in computers - the spacing between the recording head and the disk surface is typically in the 5 to 6 nanometer range, Chen says. The head tends to heat up, and researchers have been looking for ways to manage the heat or even exploit the heating to control the gap. "It's a very important issue for magnetic storage," he says. Such applications could be developed quite rapidly, he says, and some companies have already shown a strong interest in this work

The new findings could also help in the development of new photovoltaic energy conversion devices to harness photons emitted by a heat source, called thermophovoltaic, Chen says. "The high photon flux can potentially enable higher efficiency and energy density thermophovoltaic energy converters, and new energy conversion devices," he says.

The new findings could have "a broad impact," says Shen. People working with devices using small separations will now have a clear understanding that Planck's law "is not a fundamental limitation," as many people now think, he says. But further work is needed to explore even closer spacings, Chen says, because "we don't know exactly what the limit is yet" in terms of how much heat can be dissipated in closely spaced systems. "Current theory will not be valid once we push down to 1 nanometer spacing."

And in addition to practical applications, he says, such experiments "might provide a useful tool to understand some basic physics."

The work was funded by the U.S. Department of Energy and the Air Force Office of Scientific Research.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Possible Futures

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Memory Technology

New material science research may advance tech tools August 31st, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Superlattice design realizes elusive multiferroic properties: New design sandwiches a polar metallic oxide between an insulating material August 23rd, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Military

Making nanowires from protein and DNA September 3rd, 2015

Seeing quantum motion August 30th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Energy

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Solar/Photovoltaic

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic