Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Break-through Carbon Nanotube Assembly on Polymer Surface

Abstract:
MicroDysis developed a straightforward and effective technique to entrap single-walled carbon nanotubes upright onto a polymer surface, which provides an ideal matrix for maximum detection sensitivity in (bio)chemical applications.

Break-through Carbon Nanotube Assembly on Polymer Surface

Bordentown, NJ | Posted on July 30th, 2009

MicroDysis develops and markets biomedical and environmental devices and systems that use embedded carbon nanotubes to solve a wide variety of real-world problems. The Company's patented micro-molding fabrication and nanotube assembly techniques are able to embed vertically oriented carbon nanotubes into a polymer matrix. Recently, MicroDysis demonstrated this technique to entrap single-walled carbon nanotubes (SWNTs) onto a polymer surface, such as elastomer or silicone rubber, and plastics. This approach increases the functionalized surface of a device by 10,000 times and provides an ideal matrix for attaching molecular probes and other chemically active absorbers for maximum detection sensitivity. MicroDysis further developed an 8-well strip microplate with the bottom surface entrapped SWNTs for pharmaceutical and biomedical applications.

Assembly of carbon nanotubes from as-grown randomly tangled states into well-ordered and uniform manner has attracted considerable attentions worldwide due to specific properties of the carbon nanotubes and its importance for chemical, biomedical and engineering applications. Carbon nanotubes show their superior properties for immobilizing biomolecules with a three-dimensional nano-architecture and highly dense functional groups on the surfaces. For sensors, biochips, and many other applications, the well-ordered and functionalized carbon nanotubes are greatly desirable. However, the creation of properly oriented nanotubes remains a big challenge due to their fragility and that technology has not been broadly commercialized.

Atomic Force Microscope (AFM ) images (in Tapping-Mode) shows that SWNTs are vertically assembled on polymer surface. The average height of the entrapped SWNTs is around 40 nm. The nanotubular features of the nanotubes on the surface significantly enhance the surface area to about 10,000 times greater than a blank surface. With the functionalized surface feature (-COOH groups) on the nanotubes, this technique will find broad wide application in immobilizing sensing molecules for DNA assays, protein analysis, and chemical compound and ion detection.

Advantages of this technique:

1. Vertical assembled single-walled carbon nanotubes on polymer matrix.
2. Surface area increased about 10,000 times.
3. Highly dense-COOH groups for chemically binding sensing molecules.
4. Versatile sensing platform.

####

About MicroDysis
MicroDysis designs and manufactures a wide variety of microfluidic devices and instrumentation. The Company focuses on enhancing test sensitivity using its patented micro-fabrication technology for embedding functionalized carbon nanotubes onto surfaces of channels and micro-wells.

For more information, please click here

Contacts:
Joseph Huang
MicroDysis, Inc.

Copyright © MicroDysis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Chemistry

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Nanotubes/Buckyballs

Tiny carbon nanotube pores make big impact October 29th, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Sensors

Tiny carbon nanotube pores make big impact October 29th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Homeland Security

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Military

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NanoTechnology for Defense (NT4D) October 22nd, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE