Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Break-through Carbon Nanotube Assembly on Polymer Surface

Abstract:
MicroDysis developed a straightforward and effective technique to entrap single-walled carbon nanotubes upright onto a polymer surface, which provides an ideal matrix for maximum detection sensitivity in (bio)chemical applications.

Break-through Carbon Nanotube Assembly on Polymer Surface

Bordentown, NJ | Posted on July 30th, 2009

MicroDysis develops and markets biomedical and environmental devices and systems that use embedded carbon nanotubes to solve a wide variety of real-world problems. The Company's patented micro-molding fabrication and nanotube assembly techniques are able to embed vertically oriented carbon nanotubes into a polymer matrix. Recently, MicroDysis demonstrated this technique to entrap single-walled carbon nanotubes (SWNTs) onto a polymer surface, such as elastomer or silicone rubber, and plastics. This approach increases the functionalized surface of a device by 10,000 times and provides an ideal matrix for attaching molecular probes and other chemically active absorbers for maximum detection sensitivity. MicroDysis further developed an 8-well strip microplate with the bottom surface entrapped SWNTs for pharmaceutical and biomedical applications.

Assembly of carbon nanotubes from as-grown randomly tangled states into well-ordered and uniform manner has attracted considerable attentions worldwide due to specific properties of the carbon nanotubes and its importance for chemical, biomedical and engineering applications. Carbon nanotubes show their superior properties for immobilizing biomolecules with a three-dimensional nano-architecture and highly dense functional groups on the surfaces. For sensors, biochips, and many other applications, the well-ordered and functionalized carbon nanotubes are greatly desirable. However, the creation of properly oriented nanotubes remains a big challenge due to their fragility and that technology has not been broadly commercialized.

Atomic Force Microscope (AFM ) images (in Tapping-Mode) shows that SWNTs are vertically assembled on polymer surface. The average height of the entrapped SWNTs is around 40 nm. The nanotubular features of the nanotubes on the surface significantly enhance the surface area to about 10,000 times greater than a blank surface. With the functionalized surface feature (-COOH groups) on the nanotubes, this technique will find broad wide application in immobilizing sensing molecules for DNA assays, protein analysis, and chemical compound and ion detection.

Advantages of this technique:

1. Vertical assembled single-walled carbon nanotubes on polymer matrix.
2. Surface area increased about 10,000 times.
3. Highly dense-COOH groups for chemically binding sensing molecules.
4. Versatile sensing platform.

####

About MicroDysis
MicroDysis designs and manufactures a wide variety of microfluidic devices and instrumentation. The Company focuses on enhancing test sensitivity using its patented micro-fabrication technology for embedding functionalized carbon nanotubes onto surfaces of channels and micro-wells.

For more information, please click here

Contacts:
Joseph Huang
MicroDysis, Inc.

Copyright © MicroDysis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Chemistry

What can be discovered at the junction of physics and chemistry October 6th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project