Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Break-through Carbon Nanotube Assembly on Polymer Surface

Abstract:
MicroDysis developed a straightforward and effective technique to entrap single-walled carbon nanotubes upright onto a polymer surface, which provides an ideal matrix for maximum detection sensitivity in (bio)chemical applications.

Break-through Carbon Nanotube Assembly on Polymer Surface

Bordentown, NJ | Posted on July 30th, 2009

MicroDysis develops and markets biomedical and environmental devices and systems that use embedded carbon nanotubes to solve a wide variety of real-world problems. The Company's patented micro-molding fabrication and nanotube assembly techniques are able to embed vertically oriented carbon nanotubes into a polymer matrix. Recently, MicroDysis demonstrated this technique to entrap single-walled carbon nanotubes (SWNTs) onto a polymer surface, such as elastomer or silicone rubber, and plastics. This approach increases the functionalized surface of a device by 10,000 times and provides an ideal matrix for attaching molecular probes and other chemically active absorbers for maximum detection sensitivity. MicroDysis further developed an 8-well strip microplate with the bottom surface entrapped SWNTs for pharmaceutical and biomedical applications.

Assembly of carbon nanotubes from as-grown randomly tangled states into well-ordered and uniform manner has attracted considerable attentions worldwide due to specific properties of the carbon nanotubes and its importance for chemical, biomedical and engineering applications. Carbon nanotubes show their superior properties for immobilizing biomolecules with a three-dimensional nano-architecture and highly dense functional groups on the surfaces. For sensors, biochips, and many other applications, the well-ordered and functionalized carbon nanotubes are greatly desirable. However, the creation of properly oriented nanotubes remains a big challenge due to their fragility and that technology has not been broadly commercialized.

Atomic Force Microscope (AFM ) images (in Tapping-Mode) shows that SWNTs are vertically assembled on polymer surface. The average height of the entrapped SWNTs is around 40 nm. The nanotubular features of the nanotubes on the surface significantly enhance the surface area to about 10,000 times greater than a blank surface. With the functionalized surface feature (-COOH groups) on the nanotubes, this technique will find broad wide application in immobilizing sensing molecules for DNA assays, protein analysis, and chemical compound and ion detection.

Advantages of this technique:

1. Vertical assembled single-walled carbon nanotubes on polymer matrix.
2. Surface area increased about 10,000 times.
3. Highly dense-COOH groups for chemically binding sensing molecules.
4. Versatile sensing platform.

####

About MicroDysis
MicroDysis designs and manufactures a wide variety of microfluidic devices and instrumentation. The Company focuses on enhancing test sensitivity using its patented micro-fabrication technology for embedding functionalized carbon nanotubes onto surfaces of channels and micro-wells.

For more information, please click here

Contacts:
Joseph Huang
MicroDysis, Inc.

Copyright © MicroDysis

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chemistry

Anti-microbial coatings with a long-term effect for surfaces presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Nanotechnology Used to Produce Ceramic Membrane with High Thermal Stability January 19th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Discoveries

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Homeland Security

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Laser sniffs out toxic gases from afar: System can ID chemicals in the atmosphere from a kilometer away December 4th, 2014

Better bomb-sniffing technology: University of Utah engineers develop material for better detectors November 4th, 2014

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE