Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemist Aims to Turn Molecules Into Motors

Tufts University assistant professor Charles Sykes and two graduate students, Erin Iski and April Jewell, use a scanning tunneling microscope (STM) in their lab at Tufts University.

Credit: Joanie Tobin/Tufts University Photography
Tufts University assistant professor Charles Sykes and two graduate students, Erin Iski and April Jewell, use a scanning tunneling microscope (STM) in their lab at Tufts University. Credit: Joanie Tobin/Tufts University Photography

Abstract:
Charles Sykes and his team use scanning tunneling microscopes to study novel molecular motors and rotors

Chemist Aims to Turn Molecules Into Motors

Arlington, VA | Posted on July 30th, 2009

When Charles Sykes, Tufts University assistant chemistry professor, says he loves playing with blocks, he's not referring to the typical kids' toys. Instead, he's talking about his fascination with seeing atoms and molecules move on a computer screen in front of him and using technology to move the molecules himself to see how they react to various surfaces.

"I never get bored looking at pictures of atoms," said Sykes, who holds the Usen Family Career Development Assistant Professorship at Tufts University. "Atoms and molecules are the building blocks of life, but it has only been in the last 25 years that we have been able to see them, and in the last 15 years that we have been able to play with them."

In the lab, Sykes and his students explore questions related to nanoscience, or the study of things that are one billionth of a meter in size--80,000 times thinner than a human hair. To see molecules, the group uses scanning tunneling microscopes (STMs), which use electrons instead of light to make it possible to see things as small as individual atoms.

The goal is to understand how atoms and molecules interact with surfaces, and to build novel nanoscale structures by controlling these interactions. Theoretically, each molecule could be assigned a single task, creating ultra-tiny devices more than 10 million times smaller than some of the gadgets we use today, Sykes explained.

"Such machines are seen everywhere in nature. They perform tasks as varied as powering the motion of cells and even driving whole body locomotion through muscle contraction. However, mankind has not been able to create this molecular motion in nanoscale devices," said Sykes.

That means the first step for the Sykes' team is to turn molecules into motors.

While using the STM to look at sulfur-containing molecules, Sykes noticed they resembled an axle with a blade, much like a helicopter rotor. He began to wonder if they not only looked like rotors, but moved like rotors as well.

To test their motion, the researchers took small, simple molecules called thioethers, which are just one nanometer wide and composed of two, four-atom carbon chains on either side of a sulfur atom. Using liquid helium and a low-temperature STM, the researchers cooled the thioethers to seven degrees Kelvin (K), or about minus 447 degrees Fahrenheit (F), and could see that each molecule looked like a line or a thin oval. As the temperature increased to 25 degrees K (or minus 415 degrees F), the molecule began to look more like a hexagon because it was spinning so rapidly, similar to a helicopter blade.

"We discovered that, at very low temperatures, the molecules transition between a locked or 'frozen' state to one in which they spin at more than 1 million times per second," Sykes explained.

Next, the researchers tried to start and stop the spinning molecules. With the STM, they took an individual, spinning molecule and dragged it to a group of three molecules joined together that were not spinning. The individual molecule locked onto the group of three and stopped spinning. Similarly, the researchers took locked molecules and separated them, which caused each to start spinning.

The potential for one spinning molecule to cause a chain reaction and get other molecules to spin could find real-world applications in delay lines, commonly used in cellular phones to transmit signals, or in other electronics and optoelectronics.

In January, Sykes received a five-year Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) that will allow him to continue his research into molecular rotation. The researchers must answer additional questions related to molecular direction and speed before being able to predict how these nanoscale structures might behave.

He also hopes to get a wider audience interested in what he considers a fascinating field. To accomplish this, Sykes and his graduate students have made a YouTube video on using nanotechnology for alternative energy sources and they have visited high school chemistry classes with a portable STM.

"I think if you get people at the right stage in their career to become interested in something like science, you can possibly change their path," said Sykes.

-- Suzanne C. Miller, Tufts University

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
E. Charles Sykes

Related Institutions/Organizations
Tufts University

Locations
Massachusetts

Related Programs
Faculty Early Career Development (CAREER) Program

Related Awards
#0844343 CAREER: Investigating and Controlling Molecular Rotation on Surfaces

Total Grants
$280,952

Related Websites
LiveScience.com: Behind the Scenes: Chemist Aims to Turn Molecules Into Motors: www.livescience.com/technology/090710-bts-nanomotors.html

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $6.06 billion, we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Contacts:
Suzanne C. Miller
Tufts University

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More Images

Related News Press

News and information

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Flexible Future of Point-of-Care Disease Diagnostic July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Tools

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Photonics/Optics/Lasers

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project