Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemist Aims to Turn Molecules Into Motors

Tufts University assistant professor Charles Sykes and two graduate students, Erin Iski and April Jewell, use a scanning tunneling microscope (STM) in their lab at Tufts University.

Credit: Joanie Tobin/Tufts University Photography
Tufts University assistant professor Charles Sykes and two graduate students, Erin Iski and April Jewell, use a scanning tunneling microscope (STM) in their lab at Tufts University. Credit: Joanie Tobin/Tufts University Photography

Abstract:
Charles Sykes and his team use scanning tunneling microscopes to study novel molecular motors and rotors

Chemist Aims to Turn Molecules Into Motors

Arlington, VA | Posted on July 30th, 2009

When Charles Sykes, Tufts University assistant chemistry professor, says he loves playing with blocks, he's not referring to the typical kids' toys. Instead, he's talking about his fascination with seeing atoms and molecules move on a computer screen in front of him and using technology to move the molecules himself to see how they react to various surfaces.

"I never get bored looking at pictures of atoms," said Sykes, who holds the Usen Family Career Development Assistant Professorship at Tufts University. "Atoms and molecules are the building blocks of life, but it has only been in the last 25 years that we have been able to see them, and in the last 15 years that we have been able to play with them."

In the lab, Sykes and his students explore questions related to nanoscience, or the study of things that are one billionth of a meter in size--80,000 times thinner than a human hair. To see molecules, the group uses scanning tunneling microscopes (STMs), which use electrons instead of light to make it possible to see things as small as individual atoms.

The goal is to understand how atoms and molecules interact with surfaces, and to build novel nanoscale structures by controlling these interactions. Theoretically, each molecule could be assigned a single task, creating ultra-tiny devices more than 10 million times smaller than some of the gadgets we use today, Sykes explained.

"Such machines are seen everywhere in nature. They perform tasks as varied as powering the motion of cells and even driving whole body locomotion through muscle contraction. However, mankind has not been able to create this molecular motion in nanoscale devices," said Sykes.

That means the first step for the Sykes' team is to turn molecules into motors.

While using the STM to look at sulfur-containing molecules, Sykes noticed they resembled an axle with a blade, much like a helicopter rotor. He began to wonder if they not only looked like rotors, but moved like rotors as well.

To test their motion, the researchers took small, simple molecules called thioethers, which are just one nanometer wide and composed of two, four-atom carbon chains on either side of a sulfur atom. Using liquid helium and a low-temperature STM, the researchers cooled the thioethers to seven degrees Kelvin (K), or about minus 447 degrees Fahrenheit (F), and could see that each molecule looked like a line or a thin oval. As the temperature increased to 25 degrees K (or minus 415 degrees F), the molecule began to look more like a hexagon because it was spinning so rapidly, similar to a helicopter blade.

"We discovered that, at very low temperatures, the molecules transition between a locked or 'frozen' state to one in which they spin at more than 1 million times per second," Sykes explained.

Next, the researchers tried to start and stop the spinning molecules. With the STM, they took an individual, spinning molecule and dragged it to a group of three molecules joined together that were not spinning. The individual molecule locked onto the group of three and stopped spinning. Similarly, the researchers took locked molecules and separated them, which caused each to start spinning.

The potential for one spinning molecule to cause a chain reaction and get other molecules to spin could find real-world applications in delay lines, commonly used in cellular phones to transmit signals, or in other electronics and optoelectronics.

In January, Sykes received a five-year Faculty Early Career Development (CAREER) award from the National Science Foundation (NSF) that will allow him to continue his research into molecular rotation. The researchers must answer additional questions related to molecular direction and speed before being able to predict how these nanoscale structures might behave.

He also hopes to get a wider audience interested in what he considers a fascinating field. To accomplish this, Sykes and his graduate students have made a YouTube video on using nanotechnology for alternative energy sources and they have visited high school chemistry classes with a portable STM.

"I think if you get people at the right stage in their career to become interested in something like science, you can possibly change their path," said Sykes.

-- Suzanne C. Miller, Tufts University

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
E. Charles Sykes

Related Institutions/Organizations
Tufts University

Locations
Massachusetts

Related Programs
Faculty Early Career Development (CAREER) Program

Related Awards
#0844343 CAREER: Investigating and Controlling Molecular Rotation on Surfaces

Total Grants
$280,952

Related Websites
LiveScience.com: Behind the Scenes: Chemist Aims to Turn Molecules Into Motors: www.livescience.com/technology/090710-bts-nanomotors.html

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…" With an annual budget of about $6.06 billion, we are the funding source for approximately 20 percent of all federally supported basic research conducted by America's colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

For more information, please click here

Contacts:
Suzanne C. Miller
Tufts University

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More Images

Related News Press

News and information

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Consistent Scalable Functionalised Graphene Capacity March 5th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Molecular Machines

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Tools

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Photonics/Optics/Lasers

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE