Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotubes take flight

An odako grown at Rice University shows single-walled nanotubes lifting an iron and aluminum oxide "kite" as they grow while remaining firmly rooted in a carbon base.
An odako grown at Rice University shows single-walled nanotubes lifting an iron and aluminum oxide "kite" as they grow while remaining firmly rooted in a carbon base.

Abstract:
Rice scientists use nanomaterials to grow flying carpets, 'odako' kites

Nanotubes take flight

Houston, TX | Posted on July 29th, 2009

With products that range from carpets to kites, you'd think Rice University chemist Bob Hauge was running a department store.

What he's really running is a revolution in the world of carbon nanotechnology.

In a paper published this month in Nano Research, Hauge's Rice University team describes a method for making "odako," bundles of single-walled carbon nanotubes (SWNT) named for the traditional Japanese kites they resemble. It may lead to a way to produce meter-long strands of nanotubes, which by themselves are no wider than a piece of DNA.

Hauge, a distinguished faculty fellow in chemistry at Rice's Richard E. Smalley Institute for Nanoscale Science and Technology, and his co-authors, graduate students Cary Pint and Noe Alvarez, explained the odako after which the bundles are named are gigantic kites that take many hands to fly, hence the many lines that trail from them.

In this case, the lines are nanotubes, hollow cylinders of pure carbon. Individually, they're thousands of times smaller than a living cell, but Hauge's new method creates bundles of SWNTs that are sometimes measured in centimeters, and he said the process could eventually yield tubes of unlimited length.

Large-scale production of nanotube threads and cables would be a godsend for engineers in almost every field. They could be used in lightweight, superefficient power-transmission lines for next-generation electrical grids, for example, and in ultra-strong and lightning-resistant versions of carbon-fiber materials found in airplanes. Hauge said the SWNT bundles may also prove useful in batteries, fuel cells and microelectronics.

To understand how Hauge makes nanokites, it helps to have a little background on flying carpets.

Last year, Hauge and colleagues found they could make compact bundles of nanotubes starting with the same machinery the U.S. Treasury uses to embed paper money with unique markings that make the currency difficult to counterfeit.

Hauge and his team -- which included senior research fellow Howard Schmidt and Professor Matteo Pasquali, both of Rice's Department of Chemical and Biomolecular Engineering; graduate students Pint and Sean Pheasant; and Kent Coulter of San Antonio's Southwest Research Institute -- used this printing process to create thin layers of iron and aluminum oxide on a Mylar roll. They then removed the layers and ground them into small flakes.

Here's where the process took off. In a mesh cage placed into a furnace, the metallic flakes would lift off and "fly" in a flowing chemical vapor. As they flew, arrays of nanotubes grew vertically from the iron particles in tight, forest-like formations. When done cooking and viewed under a microscope, the bundles looked remarkably like the pile of a carpet.

While other methods used to grow SWNTs had yielded a paltry 0.5 percent ratio of nanotubes to substrate materials, Hauge's technique brought the yield up to an incredible 400 percent. The process could facilitate large-scale SWNT growth, Pint said.

In the latest research, the team replaced the Mylar with pure carbon. In this setup, the growing nanotubes literally raise the roof, lifting up the iron and aluminum oxide from which they're sprouting while the other ends stay firmly attached to the carbon. As the bundle of tubes grows higher, the catalyst becomes like a kite, flying in the hydrogen and acetylene breeze that flows through the production chamber.

Hauge and his team hope to follow up their work on flying carpets and nanokites with the holy grail of nanotube growth: a catalyst that will not die, enabling furnaces that churn out continuous threads of material.

"If we could get these growing so they never stop - so that, at some point, you pull one end out of the furnace while the other end is still inside growing - then you should be able to grow meter-long material and start weaving it," he said.

Read "Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces" here: tinyurl.com/nanokite

Read "Synthesis of High Aspect-Ratio Carbon Nanotube 'Flying Carpets' from Nanostructured Flake Substrates" here: tinyurl.com/nanocarpet

Read "Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpet" here: tinyurl.com/nanowater

####

About Rice University
Rice University is once again among the nation's best colleges, according to The Princeton Review. The New York-based education services company released its annual review with Rice among the top schools in several categories, including No. 1 overall for "best quality of life." The rankings of "The Best 371 Colleges" were based on a survey of 122,000 students throughout the country.

For more information, please click here

Contacts:
Mike Williams
713-348-6728

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Energy

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nexeon Board Changes Announced January 29th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

Fuel Cells

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE