Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Re-thinking electronics from the bottom up

Abstract:
More than 70 graduate students from across the country and Purdue University are on campus this week to learn about a new approach to 21st century electronic materials and devices.

Re-thinking electronics from the bottom up

West Lafayette, IN | Posted on July 28th, 2009

A team of Purdue faculty and students is developing this new approach to provide a conceptual and computational framework for applications of nanoelectronics to tackle challenges in information processing and storage, energy, the environment and in technologies for health care.

"Electronics from the Bottom Up" summer schools are conducted annually and then freely distributed through nanoHUB.org, a resource for the nanoscience and technology communities that serves nearly 100,000 users per year, half of them outside of the United States. Through a new collaboration with World Scientific, an international science publisher, low-cost lecture notes for these courses will be made available to students to complement lectures on the nanoHUB.

"More than 50 years ago, the inventors of the transistor and their colleagues at Bell Laboratories defined the intellectual foundation for the field of semiconductor electronics," said Mark Lundstrom, Purdue's Scifres Distinguished Professor of Electrical and Computer Engineering. "That framework has served the field well, leading to products from shirt pocket radios to supercomputers and cell phones. Today, it is widely felt that the future of electronics lies in nanotechnology."

When exploring new ideas for nanotechnologies, however, the traditional framework that has served researchers is frequently not the best way to think about these new problems, he said.

"What we need is to complement the traditional approach with the new insights and understanding emerging from research in nanoscience," Lundstrom said. "In the process we are led to a new, comprehensive framework that can guide the evolution of electronic devices and materials in the 21st century."

The new approach can be traced to pioneering research more than a decade ago on molecular electronics by a team at Purdue led by Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering.

"To understand the experiments that were being done, we had to take a whole new approach to electronics," says Datta. "Surprisingly, this new approach is simpler than the traditional approach and often makes cutting edge research easier to understand."

Datta teaches this material, which is usually considered appropriate for advanced graduate students, to undergraduate students at Purdue in what has become a popular course in the of Electrical and Computer Engineering. Courses are taught at Purdue, and materials, including videos of lectures, are provided on the nanoHUB.

The short courses being taught this week have attracted top graduate students from around the nation.

This summer's graduate course focuses on treating randomness and reliability in electronics.

"In microelectronics today, the period at the end of this sentence would contain hundreds of thousands of transistors," said Ashraf Alam, a professor of electrical and computer engineering. And at this size, even a small variation in the properties of transistors can lead to dramatic variations in performance. In this summer school, we are teaching students how to think about the variability and randomness in a fundamentally new way. With the right set of tools, randomness need not be unpredictable."

Electronics from the Bottom Up is the most popular content on the nanoHUB, Lundstrom said.

"We think we have the right approach to this new field of nanoelectronics -- one that will serve as a foundation for many years," he said.

Purdue is collaborating with science publisher World Scientific to provide lecture notes and, eventually, textbooks based on the new approach. The World Scientific collaboration could speed the widespread adoption of the method, Lundstrom said.

The collaboration may lead to full-length books, also to be published by World Scientific, that will serve as textbooks and references for electronic devices and materials. World Scientific and the Purdue team will produce four volumes of material over three years. Low-cost lecture notes are expected to be priced in the $25 range.

The nanoHUB is operated by the Network for Computational Nanotechnology, or NCN, a six-university network funded by the National Science Foundation and based at Purdue. The Intel Foundation also provides support.

Today, researchers exploring nanoelectronics often apply techniques for microelectronics that they learned while students. Microelectronic device dimensions are measured in microns and nanoelectronic devices in nanometers -- a millionth or billionth of a meter, respectively.

Electronics from the Bottom Up begins by understanding the smallest structures and then builds that understanding up to the micro and even macro scales. One example is using nanotechnology to measure the electrical properties of single molecule devices. Although ordinarily a daunting task even for the most skilled researchers, seniors in Datta's course calculate the properties of molecular electronic devices within the first few weeks.

"A single molecule is a rather simple thing compared to a big chunk of silicon," Lundstrom said. " But if you try to apply concepts developed for silicon microelectronic devices to single molecule devices, they can look very complicated. If you approach the problem from the bottom up, it not only looks much simpler, it also provides a clearer description of what is happening."

The new approach is made possible by the capability -- developed about a decade ago -- of studying the electrical properties of molecule-size structures. Metal contacts are placed at either end of a molecule and voltage is applied, yielding information about its electrical characteristics.

Datta reasoned that this newly developed capability of measuring the electronic properties of single molecules could lead to a more general approach to understanding electronic conduction in small devices. "Too much time is spent teaching students about concepts and issues specific to large conductors that cannot even be applied to small conductors," Datta said. "In order to teach students, especially undergraduates, I developed a very different approach that allowed people to get into cutting-edge research, almost from day one."

The initial materials in the educational initiative are being developed by Datta, Lundstrom and Alam.

World Scientific, headquartered in Singapore, publishes more than 400 books and about 80 journals a year in the fields of science, technology, medicine, and business and management.

####

About Purdue University
Purdue University, located in West Lafayette, Indiana, U.S., is the flagship university of the six campuses within the Purdue University System.[1] With its highly competitive engineering curriculum and its leading programs in aerospace, electrical, and mechanical, Purdue is consistently regarded as one of the top technology schools in the world.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Writer: Emil Venere, 765-494-4709,

Sources: Mark Lundstrom, 765-494-3515,

Supriyo Datta, 765-494-2706,

Ashraf Alam, 765-494-6441,

Purdue News Service: (765) 494-2096;

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

nanoHUB

Related News Press

News and information

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Topology explains queer electrical current boost in non-magnetic metal: Scientists reduce resistance in PdCoO2 with magnetic fields April 12th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Environment

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Catalyst could make production of key chemical more eco-friendly April 10th, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic