Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Re-thinking electronics – from the bottom up

More than 70 graduate students from across the country and Purdue University are on campus this week to learn about a new approach to 21st century electronic materials and devices.

Re-thinking electronics – from the bottom up

West Lafayette, IN | Posted on July 28th, 2009

A team of Purdue faculty and students is developing this new approach to provide a conceptual and computational framework for applications of nanoelectronics to tackle challenges in information processing and storage, energy, the environment and in technologies for health care.

"Electronics from the Bottom Up" summer schools are conducted annually and then freely distributed through, a resource for the nanoscience and technology communities that serves nearly 100,000 users per year, half of them outside of the United States. Through a new collaboration with World Scientific, an international science publisher, low-cost lecture notes for these courses will be made available to students to complement lectures on the nanoHUB.

"More than 50 years ago, the inventors of the transistor and their colleagues at Bell Laboratories defined the intellectual foundation for the field of semiconductor electronics," said Mark Lundstrom, Purdue's Scifres Distinguished Professor of Electrical and Computer Engineering. "That framework has served the field well, leading to products from shirt pocket radios to supercomputers and cell phones. Today, it is widely felt that the future of electronics lies in nanotechnology."

When exploring new ideas for nanotechnologies, however, the traditional framework that has served researchers is frequently not the best way to think about these new problems, he said.

"What we need is to complement the traditional approach with the new insights and understanding emerging from research in nanoscience," Lundstrom said. "In the process we are led to a new, comprehensive framework that can guide the evolution of electronic devices and materials in the 21st century."

The new approach can be traced to pioneering research more than a decade ago on molecular electronics by a team at Purdue led by Supriyo Datta, the Thomas Duncan Distinguished Professor of Electrical and Computer Engineering.

"To understand the experiments that were being done, we had to take a whole new approach to electronics," says Datta. "Surprisingly, this new approach is simpler than the traditional approach and often makes cutting edge research easier to understand."

Datta teaches this material, which is usually considered appropriate for advanced graduate students, to undergraduate students at Purdue in what has become a popular course in the of Electrical and Computer Engineering. Courses are taught at Purdue, and materials, including videos of lectures, are provided on the nanoHUB.

The short courses being taught this week have attracted top graduate students from around the nation.

This summer's graduate course focuses on treating randomness and reliability in electronics.

"In microelectronics today, the period at the end of this sentence would contain hundreds of thousands of transistors," said Ashraf Alam, a professor of electrical and computer engineering. And at this size, even a small variation in the properties of transistors can lead to dramatic variations in performance. In this summer school, we are teaching students how to think about the variability and randomness in a fundamentally new way. With the right set of tools, randomness need not be unpredictable."

Electronics from the Bottom Up is the most popular content on the nanoHUB, Lundstrom said.

"We think we have the right approach to this new field of nanoelectronics -- one that will serve as a foundation for many years," he said.

Purdue is collaborating with science publisher World Scientific to provide lecture notes and, eventually, textbooks based on the new approach. The World Scientific collaboration could speed the widespread adoption of the method, Lundstrom said.

The collaboration may lead to full-length books, also to be published by World Scientific, that will serve as textbooks and references for electronic devices and materials. World Scientific and the Purdue team will produce four volumes of material over three years. Low-cost lecture notes are expected to be priced in the $25 range.

The nanoHUB is operated by the Network for Computational Nanotechnology, or NCN, a six-university network funded by the National Science Foundation and based at Purdue. The Intel Foundation also provides support.

Today, researchers exploring nanoelectronics often apply techniques for microelectronics that they learned while students. Microelectronic device dimensions are measured in microns and nanoelectronic devices in nanometers -- a millionth or billionth of a meter, respectively.

Electronics from the Bottom Up begins by understanding the smallest structures and then builds that understanding up to the micro and even macro scales. One example is using nanotechnology to measure the electrical properties of single molecule devices. Although ordinarily a daunting task even for the most skilled researchers, seniors in Datta's course calculate the properties of molecular electronic devices within the first few weeks.

"A single molecule is a rather simple thing compared to a big chunk of silicon," Lundstrom said. " But if you try to apply concepts developed for silicon microelectronic devices to single molecule devices, they can look very complicated. If you approach the problem from the bottom up, it not only looks much simpler, it also provides a clearer description of what is happening."

The new approach is made possible by the capability -- developed about a decade ago -- of studying the electrical properties of molecule-size structures. Metal contacts are placed at either end of a molecule and voltage is applied, yielding information about its electrical characteristics.

Datta reasoned that this newly developed capability of measuring the electronic properties of single molecules could lead to a more general approach to understanding electronic conduction in small devices. "Too much time is spent teaching students about concepts and issues specific to large conductors that cannot even be applied to small conductors," Datta said. "In order to teach students, especially undergraduates, I developed a very different approach that allowed people to get into cutting-edge research, almost from day one."

The initial materials in the educational initiative are being developed by Datta, Lundstrom and Alam.

World Scientific, headquartered in Singapore, publishes more than 400 books and about 80 journals a year in the fields of science, technology, medicine, and business and management.


About Purdue University
Purdue University, located in West Lafayette, Indiana, U.S., is the flagship university of the six campuses within the Purdue University System.[1] With its highly competitive engineering curriculum and its leading programs in aerospace, electrical, and mechanical, Purdue is consistently regarded as one of the top technology schools in the world.

From Wikipedia, the free encyclopedia

For more information, please click here

Writer: Emil Venere, 765-494-4709,

Sources: Mark Lundstrom, 765-494-3515,

Supriyo Datta, 765-494-2706,

Ashraf Alam, 765-494-6441,

Purdue News Service: (765) 494-2096;

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links


Related News Press

News and information

Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Dimensionality transition in a newly created material November 27th, 2015

Nanoparticles simplify DNA identification and quantification November 27th, 2015

A new form of real gold, almost as light as air November 27th, 2015


SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

Pioneering research boosts graphene revolution November 17th, 2015

University of Leeds Expands Structural Biology with Purchase of Multiple Titan Krios TEMs from FEI November 10th, 2015

Iran Signs MoU to Export Nanodevices to China November 9th, 2015

Chip Technology

New 'self-healing' gel makes electronics more flexible November 25th, 2015

Physicists explain the unusual behavior of strongly disordered superconductors: Using a theory they developed previously, the scientists have linked superconducting carrier density with the quantum properties of a substance November 25th, 2015

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

Strange quantum phenomenon achieved at room temperature in semiconductor wafers November 21st, 2015

Memory Technology

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

NUS scientists developed super sensitive magnetic sensor: New type of hybrid sensor technology shown to be more than 200 times more sensitive than commercially available sensors November 1st, 2015

Successful industrialization of high-density 3D integrated silicon capacitors for ultra-miniaturized electronic components: Three high-tech SMEs finalize the joint EU-funded PICS project on innovative ALD materials and manufacturing equipment October 22nd, 2015

Researchers from Kiel and Bochum develop new information storage device October 13th, 2015


New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

GLOBALFOUNDRIES Achieves 14nm FinFET Technology Success for Next-Generation AMD Products: Leading-edge foundry’s proven silicon technology poised to help enable significant performance and power efficiency improvements for AMD’s next-generation products November 6th, 2015

USF team finds new way of computing with interaction-dependent state change of nanomagnets: University of South Florida engineering researchers find nano-scale magnets could compute complex functions significantly faster than conventional computers October 29th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015


Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Dimensionality transition in a newly created material November 27th, 2015

Nanoparticles simplify DNA identification and quantification November 27th, 2015

A new form of real gold, almost as light as air November 27th, 2015


Researchers find new, inexpensive way to clean water from oil sands production November 24th, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015

Sea traffic pollutes our lungs more than previously thought November 21st, 2015

Application of Nanocomposite Membranes in Fuel Cells to Produce Green Energy November 18th, 2015


Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Tandem solar cells are simply better: Higher efficiency thanks to perovskite magic crystal November 24th, 2015

ORNL microscopy captures real-time view of evolving fuel cell catalysts November 21st, 2015

NREL research identifies increased potential for perovskites as a material for solar cells November 21st, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic