Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecules mean more Moore 'Silicon with afterburners' developed at Rice could be boon to electronics manufacturers

JAMES TOUR
JAMES TOUR

Abstract:
Silicon is at the heart of an electronics revolution that has buoyed the civilized world for decades. But as time goes on and technology advances, it's becoming apparent that silicon could use a little help.

A Rice University laboratory is manipulating molecules that might just be the ticket to extending Moore's Law, the theory that dictates the number of transistors that can be placed on an integrated circuit doubles about every two years.

Molecules mean more Moore 'Silicon with afterburners' developed at Rice could be boon to electronics manufacturers

Houston, TX | Posted on July 24th, 2009

The advance of digital technology in all its guises depends on Moore's Law holding steady, but the limits are becoming apparent; Intel co-founder and theory namesake Gordon Moore has said the law cannot be sustained indefinitely.

James Tour, Rice's Chao Professor of Chemistry and professor of mechanical engineering and materials science and of computer science, and his colleagues have published a new paper that outlines a way to keep electronics manufacturers on track with Moore's Law a little longer.

The paper, "Controllable Molecular Modulation of Conductivity in Silicon-Based Devices," was published this month by the Journal of the American Chemical Society. Tour and his Rice team of graduate student David Corley and former postdoctoral students Tao He, Meng Lu and Jianli He coauthored the paper with Neil Halen Di Spigna, David Nackashi and Paul Franzon of North Carolina State University. They described a way forward for manufacturers who have run up against the barriers inherent in making microprocessors both smaller and more powerful.

The challenge, said Tour, is to get past the limits of doping, a process that has been essential to creating the silicon substrate that is at the heart of all modern integrated circuits.

Doping introduces impurities into pure crystalline silicon as a way of tuning microscopic circuits to a particular need, and it's been effective so far even in concentrations as small as one atom of boron, arsenic or phosphorus per 100 million of silicon.

But as manufacturers pack more transistors onto integrated circuits by making the circuits ever smaller, doping gets problematic.

"When silicon gets really small, down to the nanoscale, you get structures that essentially have very little volume," said Tour. "You have to put dopant atoms in silicon for it to work as a semiconductor, but now devices are so small you get inhomogeneities. You may have a few more dopant atoms in this device than in that one, so the irregularities between them become profound."

When you put billions of devices on a single chip, you want them all to work the same way, but that becomes more difficult with the size of a state-of-the-art circuit at 45 nanometers wide -- a human hair is about 100,000 nanometers wide. And smaller ones are on the way.

The paper suggests that monolayer molecular grafting -- basically, attaching molecules to the surface of the silicon rather than mixing them in -- essentially serves the same function as doping, but works better at the nanometer scale. "We call it silicon with afterburners," Tour said. "We're putting an even layer of molecules on the surface. These are not doping in the same way traditional dopants do, but they're effectively doing the same thing."

Tour said years of research into molecular computing with an eye toward replacing silicon has yielded little fruit. "It's hard to compete with something that has trillions of dollars and millions of person-years invested into it. So we decided it would be good to complement silicon, rather than try to supplant it."

He anticipates wide industry interest in the process, in which carbon molecules could be bonded with silicon either through a chemical bath or evaporation. "This is a nice entry point for molecules into the silicon industry. We can go to a manufacturer and say, 'Let us make your fabrication line work for you longer. Let us complement what you have.'

"This gives the Intels and the Microns and the Samsungs of the world another tool to try, and I guarantee you they'll be trying this."

####

For more information, please click here

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

The quantum middle man July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Nanoelectronics

New technology using silver may hold key to electronics advances July 2nd, 2015

Exagan Raises 5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project