Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rolling out the nanotubes: Synthesis of graphitic nanotubes containing platinum metals achieved through self-assembly techniques

Figure 1: Two examples of nanotubular assemblies fabricated from single hexabenzocoronene amphiphile building blocks (blue/grey/red spheres) and platinum (Pt) metal ions (orange spheres). 
Credit: Riken
Figure 1: Two examples of nanotubular assemblies fabricated from single hexabenzocoronene amphiphile building blocks (blue/grey/red spheres) and platinum (Pt) metal ions (orange spheres). Credit: Riken

Abstract:
Nanoscale materials with well-defined shapes, such as one-dimensional hollow tubes, have attracted the interest of scientists seeking to utilize their unique properties. Nanotubes have large inner and outer surface areas that are accessible to many smaller molecules, meaning they have the potential to be developed into new types of sensors and catalysts.

Rolling out the nanotubes: Synthesis of graphitic nanotubes containing platinum metals achieved through self-assembly techniques

Japan | Posted on July 24th, 2009

Efficient techniques to synthesize nanotubes, however, are uncommon. Now, Takuzo Aida and Takanori Fukushima of the RIKEN Advanced Science Institute in Wako and colleagues from the Japan Science and Technology Agency have developed a way to controllably self-assemble graphitic molecules and platinum metals into nanotubes with specific dimensions and structural features1.

Aida and his team used a molecule called hexabenzocoronene (HBC) as the base for their new nanotubes. Consisting of thirteen aromatic benzene rings interlocked into a large, flat cyclic structure that resembles graphite, HBC is normally used as a building block for liquid crystalline semiconductors.

In 2004, Aida, Fukushima, and colleagues discovered that by adding long hydrocarbon groups and polar chains called triethylene glycol to HBC, they could make the graphitic molecule into an amphiphile2—a surfactant that can be dissolved in organic solvents. Recrystallizing a solution of the HBC amphiphiles spontaneously produced new graphitic nanotubes.

In their latest work, the researchers incorporated platinum metals into their nanotubes structures. According to Fukushima, transition metals such as platinum can add useful catalytic, electronic, luminescent, and magnetic functionalities to the nanotubes.

In order to attach platinum metals to the nanotubes, the scientists added a molecule known as pyridine, a nitrogen-containing benzene ring, to the ends of the triethylene glycol chains on the HBC amphiphile.

"Pyridine is one of the simplest and most common molecules for binding transition metals," explains Fukushima. "We thought it fit to use such a general binding molecule in our first attempt to functionalize the HBC nanotubes with transition metals."

By heating a solution of the HBC amphiphiles with platinum metal ions, then allowing the mixture to cool to room temperature, the scientists observed spontaneous formation of new metal-ion-coated graphitic nanotubes (Fig. 1). Altering the assembly conditions produced tubular assemblies with different diameters, lengths, and wall widths.

"Our nanotube can serve as a unique one-dimensional nano-scaffold with not only high structural integrity, but also with beneficial electronic properties such as energy and charge transport capabilities," says Fukushima. "We expect that the combination of these two components might lead to unprecedented phenomenon and functions."
Reference

1. Zhang, W., Jin, W., Fukushima, T., Ishii, N. & Aida, T. Metal-ion-coated graphitic nanotubes: controlled self-assembly of a pyridyl-appended gemini-shaped hexabenzocoronene amphiphile. Angewandte Chemie International Edition 121, 4841-4844 (2009).
2. Hill, J. P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N. & Aida, T. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481-1483 (2004).

The corresponding author for this highlight is based at the RIKEN Functional Soft Matter Engineering Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Self Assembly

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Engineered polymer membranes could be new option for water treatment May 6th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Discoveries

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project