Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Rolling out the nanotubes: Synthesis of graphitic nanotubes containing platinum metals achieved through self-assembly techniques

Figure 1: Two examples of nanotubular assemblies fabricated from single hexabenzocoronene amphiphile building blocks (blue/grey/red spheres) and platinum (Pt) metal ions (orange spheres). 
Credit: Riken
Figure 1: Two examples of nanotubular assemblies fabricated from single hexabenzocoronene amphiphile building blocks (blue/grey/red spheres) and platinum (Pt) metal ions (orange spheres). Credit: Riken

Abstract:
Nanoscale materials with well-defined shapes, such as one-dimensional hollow tubes, have attracted the interest of scientists seeking to utilize their unique properties. Nanotubes have large inner and outer surface areas that are accessible to many smaller molecules, meaning they have the potential to be developed into new types of sensors and catalysts.

Rolling out the nanotubes: Synthesis of graphitic nanotubes containing platinum metals achieved through self-assembly techniques

Japan | Posted on July 24th, 2009

Efficient techniques to synthesize nanotubes, however, are uncommon. Now, Takuzo Aida and Takanori Fukushima of the RIKEN Advanced Science Institute in Wako and colleagues from the Japan Science and Technology Agency have developed a way to controllably self-assemble graphitic molecules and platinum metals into nanotubes with specific dimensions and structural features1.

Aida and his team used a molecule called hexabenzocoronene (HBC) as the base for their new nanotubes. Consisting of thirteen aromatic benzene rings interlocked into a large, flat cyclic structure that resembles graphite, HBC is normally used as a building block for liquid crystalline semiconductors.

In 2004, Aida, Fukushima, and colleagues discovered that by adding long hydrocarbon groups and polar chains called triethylene glycol to HBC, they could make the graphitic molecule into an amphiphile2a surfactant that can be dissolved in organic solvents. Recrystallizing a solution of the HBC amphiphiles spontaneously produced new graphitic nanotubes.

In their latest work, the researchers incorporated platinum metals into their nanotubes structures. According to Fukushima, transition metals such as platinum can add useful catalytic, electronic, luminescent, and magnetic functionalities to the nanotubes.

In order to attach platinum metals to the nanotubes, the scientists added a molecule known as pyridine, a nitrogen-containing benzene ring, to the ends of the triethylene glycol chains on the HBC amphiphile.

"Pyridine is one of the simplest and most common molecules for binding transition metals," explains Fukushima. "We thought it fit to use such a general binding molecule in our first attempt to functionalize the HBC nanotubes with transition metals."

By heating a solution of the HBC amphiphiles with platinum metal ions, then allowing the mixture to cool to room temperature, the scientists observed spontaneous formation of new metal-ion-coated graphitic nanotubes (Fig. 1). Altering the assembly conditions produced tubular assemblies with different diameters, lengths, and wall widths.

"Our nanotube can serve as a unique one-dimensional nano-scaffold with not only high structural integrity, but also with beneficial electronic properties such as energy and charge transport capabilities," says Fukushima. "We expect that the combination of these two components might lead to unprecedented phenomenon and functions."
Reference

1. Zhang, W., Jin, W., Fukushima, T., Ishii, N. & Aida, T. Metal-ion-coated graphitic nanotubes: controlled self-assembly of a pyridyl-appended gemini-shaped hexabenzocoronene amphiphile. Angewandte Chemie International Edition 121, 4841-4844 (2009).
2. Hill, J. P., Jin, W., Kosaka, A., Fukushima, T., Ichihara, H., Shimomura, T., Ito, K., Hashizume, T., Ishii, N. & Aida, T. Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. Science 304, 1481-1483 (2004).

The corresponding author for this highlight is based at the RIKEN Functional Soft Matter Engineering Team

####

For more information, please click here

Copyright © Riken

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article

Related News Press

News and information

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Cambrios and Heraeus Jointly Create New, High-Conductivity Transparent Conductors: Two Companies' Combined Products Dramatically Extend Flexible Substrate Capabilities for Next-Generation Mass-Market Technology Products March 3rd, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Nanotubes/Buckyballs

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE