Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New windows opened on cell-to-cell interactions: Oregon researcher puts new focus on how particles of colloidal materials and artificial cells interact

An image of a lipid membrane -- similar in structure to the membranes of all living cells -- draped over a terraced silicon chip one-quarter millimeter square. Brush-like molecules that mimic the structure of particular cell-surface proteins are incorporated into the membrane, and the pattern of light emitted by probes attached to these molecules (green) and the lipids (red) reveals the molecular orientation -- whether the brushes "stand up" or "lie down" at the membrane surface.

Credit: Courtesy of Raghuveer Parthasarathy
An image of a lipid membrane -- similar in structure to the membranes of all living cells -- draped over a terraced silicon chip one-quarter millimeter square. Brush-like molecules that mimic the structure of particular cell-surface proteins are incorporated into the membrane, and the pattern of light emitted by probes attached to these molecules (green) and the lipids (red) reveals the molecular orientation -- whether the brushes "stand up" or "lie down" at the membrane surface.

Credit: Courtesy of Raghuveer Parthasarathy

Abstract:
Applying biological molecules from cell membranes to the surfaces of artificial materials is opening peepholes on the very basics of cell-to-cell interaction.

Two recently published papers by a University of Oregon biophysicist and colleagues suggest that putting lipids and other cell membrane components on manufactured surfaces could lead to new classes of self-assembling materials for use in precision optics, nanotechnology, electronics and pharmaceuticals.

New windows opened on cell-to-cell interactions: Oregon researcher puts new focus on how particles of colloidal materials and artificial cells interact

Eugene, OR | Posted on July 22nd, 2009

Though the findings are basic, they provide new directions for research to help understand nature at nanotechnological scales where the orientation of minuscule proteins is crucial, said Raghuveer Parthasarathy, who is a member of the UO's Material Science Institute, the Institute of Molecular Biology and the Oregon Nanoscience and Microtechnologies Institute (ONAMI).

(Parthasarathy discusses his research at www.youtube.com/watch?v=XGOmp_fNVXQ, and he summarizes the studies described below at: www.youtube.com/watch?v=rvd7f6qYYro.)

Controlling interactions between colloidal materials

In the May issue of Soft Matter, a journal of the Royal Society of Chemistry, UO doctoral student Yupeng Kong and Parthasarathy applied biological material -- a thin layer of membrane lipids -- onto to tiny glass spheres about one-millionth of a meter in diameter to closely study colloidal interaction.

Colloids are tiny particles found dispersed in liquids: in milk, paints, many food stuffs, cosmetics and pharmaceuticals. Compared to atoms and molecules colloids are big, and creating artificial colloids with directed properties is a goal in many technologies, especially optics at nanoscales.

Before applying the biomembrane, the identical negatively charged spheres repelled each other. With the membrane attached, conditions changed dramatically. Suddenly, the like-charged spheres were attracted to each other.

"This was weird," Parthasarathy said. "Like-charged objects aren't supposed to attract each other. People have seen like-charge attraction in a few other colloidal systems in the last 10 or 15 years, but still no one understands it. Here, we've got the first system in which like-charge attraction can be controlled, simply by the incorporation of molecules from biological membranes. We can tune attraction or repulsion over the entire spectrum simply by changing the composition of the membrane. This is useful both for technological applications, and for illuminating the fundamental mechanisms behind colloidal interactions."

The observations were made using an inverted microscopy technique in which the glass spheres were placed in a 655-nanometer diode laser beam, an approach developed in Parthasarathy's lab by former undergraduate biophysics student Greg Tietjen, now a doctoral student at the University of Chicago.

The findings of the National Science Foundation-funded research, he said, suggest that specially tweaked biological membranes applied to artificially produced materials may serve as specialty control knobs that direct materials to do very specific things.

Controlling molecular orientation from cell membranes

In a paper appearing online in the Journal of the American Chemical Society (JACS) in early July, Parthasarathy teamed with organic chemists at the University of California, Berkeley, to study how molecules are oriented on their cell membranes to allow for cell-to-cell interactions.

The six-member research team built tiny artificial molecules that mimic brush-like membrane proteins and contain tiny fluorescent probes at the outer end. These miniscule polymers were incorporated into artificial membranes placed on a silicon wafer that acts like a mirror, allowing precise optical measurements of the orientation of the molecule.

Electron microscopy revealed the presence of rigid, rod-like brushy glycoprotein (sugar-containing compounds) -- 30 billionths of a meter long -- similar to natural cell-surface proteins. Interaction between cells occurs when these rods stand up from the membranes, a property whose control remains poorly understood.

The surprise, Parthasarathy said, was that the sugar-laden rods stood up like trees rising in a forest only for particular fluorescent probes, which represented just 2 percent of the molecule's weight.

The big issue that surfaced from the project -- funded by the U.S. Department of Energy, National Science Foundation and the Alfred P. Sloan Foundation -- was that the slightest trepidation of a molecule's structure affects its orientation, he said.

The goal, Parthasarathy said, may be to determine how to control the orientation of the brush-like forest through either chemical or optical measures to, in turn, control cell interaction. Such control of artificially produced molecules, he added, could have huge potential applications in the electronics industry.

Parthasarathy's UO team is now looking at DNA anchored to membranes to compare the findings and see if such on-off switching of the orientation of molecules may be possible.

"There are brush-like proteins at cell surfaces that are really important for such things as cellular interactions within the immune system," Parthasarathy said. "At the surface of every cell is a forest of molecules to induce interactions. These proteins need to rise from the forest. What allows them to stick up or lie down? We've really had a poor idea of what's going on. Knowing the genome and what proteins are there is crucially important, but that information in itself does not tell you anything about the answer to the question."

Co-authors of the JACS study with Parthasarathy are Kamil Godula, David Rabuka, Zsofia Botyanszki and Carolyn R. Bertozzi, all of UC-Berkeley, and Marissa L. Umbel, then an undergraduate student from Indiana University of Pennsylvania who worked in Parthasarathy's UO lab in summer 2008 as part of the UO's National Science Foundation-funded Research Experiences for Undergraduates. Umbel now is studying medical physics at Ohio State University.

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Jim Barlow

541-346-3481

Source:
Raghu Parthasarathy
associate professor
department of physics
541-346-2933

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Parthasarathy faculty page

Parthasarathy lab

UO physics department

Materials Science Institute

Institute of Molecular Biology

ONAMI

Related News Press

News and information

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Self Assembly

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Nanomedicine

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Discoveries

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Future solar panels September 2nd, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nanobiotechnology

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE