Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Purer water made possible by Sandia advance: A single atom makes a big difference

This bar graph shows the efficacy of removing wild-type bacteriophage from Rio Grande water using the all-aluminum coagulant (yellow), the gallium-aluminum coagulant (pink) and a germanium-aluminum coagulant (green). While the gallium-aluminum coagulant is most effective, the germanium-aluminum coagulant is less effective than the all-aluminum coagulant. The gallium makes the active ingredient for binding contaminants more stable and effective, while the germanium, introduced as another variable, was found to make the active ingredient less stable and less effective.
This bar graph shows the efficacy of removing wild-type bacteriophage from Rio Grande water using the all-aluminum coagulant (yellow), the gallium-aluminum coagulant (pink) and a germanium-aluminum coagulant (green). While the gallium-aluminum coagulant is most effective, the germanium-aluminum coagulant is less effective than the all-aluminum coagulant. The gallium makes the active ingredient for binding contaminants more stable and effective, while the germanium, introduced as another variable, was found to make the active ingredient less stable and less effective.

Abstract:
By substituting a single atom in a molecule widely used to purify water, researchers at Sandia National Laboratories have created a far more effective decontaminant with a shelf life superior to products currently on the market.

Sandia has applied for a patent on the material, which removes bacterial, viral and other organic and inorganic contaminants from river water destined for human consumption, and from wastewater treatment plants prior to returning water to the environment.

Purer water made possible by Sandia advance: A single atom makes a big difference

ALBUQUERQUE, NM | Posted on July 22nd, 2009

"Human consumption of ‘challenged' water is increasing worldwide as preferred supplies become more scarce," said Sandia principal investigator May Nyman. "Technological advances like this may help solve problems faced by water treatment facilities in both developed and developing countries."

The study was published in June 2009 in the journal Environmental Science & Technology (a publication of the American Chemical Society) and highlighted in the June 22 edition of Chemical & Engineering News. Sandia is working with a major producer of water treatment chemicals to explore the commercial potential of the compound.

The water-treatment reagent, known as a coagulant, is made by substituting an atom of gallium in the center of an aluminum oxide cluster — itself a commonly used coagulant in water purification, says Nyman.

The substitution isn't performed atom by atom using nanoscopic tweezers but rather uses a simple chemical process of dissolving aluminum salts in water, gallium salts into a sodium hydroxide solution and then slowly adding the sodium hydroxide solution to the aluminum solution while heating.

"The substitution of a single gallium atom in that compound makes a big difference," said Nyman. "It greatly improves the stability and effectiveness of the reagent. We've done side-by-side tests with a variety of commercially available products. For almost every case, ours performs best under a wide range of conditions."

Wide-ranging conditions are inevitable, she said, when dealing with a natural water source such as a river. "You get seasonal and even daily fluctuations in pH, temperature, turbidity and water chemistry. And a river in central New Mexico has very different conditions than say, a river in Ohio."

The Sandia coagulant attracts and binds contaminants so well because it maintains its electrostatic charge more reliably than conventional coagulants made without gallium, itself a harmless addition.

The new material also resists converting to larger, less-reactive aggregates before it is used. This means it maintains a longer shelf life, avoiding the problem faced by related commercially available products that aggregate over time.

"The chemical substitution [of a gallium atom for an aluminum atom] has been studied by Sandia's collaborators at the University of California at Davis, but nobody has ever put this knowledge to use in an application such as removing water contaminants like microorganisms," said Nyman.

The project was conceived and all water treatment studies were performed at Sandia, said Nyman, who worked with Sandia microbiologist Tom Stewart. Transmission electron microscope images of bacteriophages binding to the altered material were achieved at the University of New Mexico. Mass spectroscopy of the alumina clusters in solution was performed at UC Davis.

The work was sponsored by Sandia's Laboratory Directed Research Development office. Ohio."

####

About Sandia National Laboratories
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

For more information, please click here

Contacts:
Neal Singer

(505) 845-7078

Copyright © Sandia National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Laboratories

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Discovery of gold nanocluster 'double' hints at other shape-changing particles: New analysis approach brings two unique atomic structures into focus June 19th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Discovery of gold nanocluster 'double' hints at other shape changing particles: New analysis approach brings two unique atomic structures into focus June 15th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

New electron microscope method detects atomic-scale magnetism June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Discoveries

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Patents/IP/Tech Transfer/Licensing

New 'ukidama' nanoparticle structure revealed June 14th, 2016

Rice wins award to recruit cancer researcher: $2 million CPRIT grant aims to bring MIT researcher Omid Veiseh to Houston June 7th, 2016

Nanobiotix receives US$1m milestone payment from PharmaEngine: First patient injected with NBTXR3 in soft tissue sarcoma registration phase in Asia May 31st, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Water

Mille-feuille-filter removes viruses from water May 19th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Understanding tiny droplets can make for better weather forecasts: Climate change models also benefit from understanding fundamental thermodynamics of water droplets May 6th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic