Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Monitoring Cancer Cell Changes With Quantum Dots

Abstract:
One of the earliest events that changes a normal cell into a malignant one is known as deoxyribonucleic acid (DNA) hypermethylation, a biochemical alteration that inactivates critical tumor-suppressor genes. A team of investigators at Johns Hopkins University has developed a quantum dot-based method that can quantify DNA methylation in premalignant cells harvested from human patients.

Monitoring Cancer Cell Changes With Quantum Dots

Bethesda, MD | Posted on July 21st, 2009

Jeff Tza-Huei Wang, Ph.D., and Hetty E. Carraway, M.D., led the team of researchers that developed the method they call methylation-specific quantitative fluorescence resonance energy transfer (MS-qFRET). The details of their work appear in the journal Genome Research. The MS-qFRET process starts by treating sample DNA with sodium bisulfite, which converts all unmethylated cytosines (one of the four nucleic acid components of DNA) into uracil, leaving any methylated cytosines unchanged. The treated DNA then is amplified using a modified polymerase chain reaction procedure that differentiates between methylated and unmethylated DNA. This procedure also introduces fluorescent markers and biotin molecules on each piece of methylated DNA. Finally, streptavidin-coated quantum dots are added to the amplified DNA, binding tightly to the biotin-linked DNA molecules.

Quantification of methylated DNA occurs by the FRET process, in which energy transfers between the fluorescent molecule and the nearby quantum dot. The amount of fluorescence quenching, measured using confocal microscopy, provides a sensitive and accurate measure of DNA methylation. The technique is sensitive enough to enable the investigators to monitor methylation changes after premalignant cells are treated with drugs known to alter methylation patterns. The researchers also note that this technique is amenable to multiplexing, which affords the opportunity to compare multiple samples from the same patient.

This work, which was supported in part by the National Cancer Institute, is detailed in the paper "MS-qFRET: A quantum dot-based method for analysis of DNA methylation." An investigator from the Lovelace Respiratory Research Institute in Albuquerque also participated in this study. An abstract of the paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanomedicine

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Quantum Dots/Rods

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Nanobiotechnology

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic