Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Image Breast Cancer

Abstract:
Current methods of detecting breast cancer suffer from low sensitivity, limited spatial resolution, or the need to use complicated and expensive radioisotope-based technologies.

Nanoparticles Image Breast Cancer

Bethesda, MD | Posted on July 21st, 2009

A new report from investigators at the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology suggests that targeted iron oxide nanoparticles may overcome these limitations and could serve as novel imaging agents for the early detection of breast tumors.

Reporting its work in the journal Clinical Cancer Research, a research team led by Lily Yang, M.D., Ph.D., and Hui Mao, Ph.D., both of the Emory University School of Medicine, describes its development of a new type of nanoparticle construct comprising a single iron oxide crystal coated with a polymer. This polymer both stabilizes the magnetic core and provides attachment points for tumor-targeting peptides and fluorescent dyes. The targeting peptide is a fragment of a molecule known as urokinase-type plasminogen activator; this fragment binds to a receptor that is overexpressed by breast cancer cells.

In an initial set of experiments, the investigators showed that this construct was taken up specifically by breast tumor cells growing in culture, with virtually no uptake by other types of cells. The researchers were able to image the nanoparticles by detecting the fluorescent dye using standard fluorescence microscopy.

Next, the researchers injected the nanoparticles into mice bearing human breast tumors. By 5 hours after the injection, the nanoparticles were readily detected in tumors using a commercial magnetic resonance imaging scanner. In contrast to untargeted nanoparticles, there was far less uptake of the imaging agent by liver and spleen. The tumor-targeting properties of these nanoparticles were confirmed using fluorescence imaging, which is possible in an animal as small as a mouse.

This work, which is detailed in the paper "Receptor-targeted nanoparticles for in vivo imaging of breast cancer," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. Investigators from Georgia State University and Ocean Nanotech, LLC, also participated in this study. An abstract is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Possible Futures

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Nanomedicine

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosun’s ALD solutions enable novel high-speed memories June 27th, 2017

Nanobiotechnology

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project