Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Implantable Device Offers Continuous Cancer Monitoring

Abstract:
Surgical removal of a tissue sample is now the standard for diagnosing cancer. Such procedures, known as biopsies, are accurate but offer only a snapshot of the tumor at a single moment in time.

Implantable Device Offers Continuous Cancer Monitoring

Bethesda, MD | Posted on July 21st, 2009

Monitoring a tumor for weeks or months after the biopsy and tracking its growth and how it responds to treatment would be much more valuable, says Michael J. Cima, Ph.D., who has developed the first implantable device that can do just that. Dr. Cima, professor of materials science and engineering at the Massachusetts Institute of Technology (MIT) and a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence (CCNE), and his colleagues reported in the journal Biosensors and Bioelectronics that their device successfully tracked a tumor marker in mice for 1 month. Fellow MIT CCNE investigators Robert Langer, Ph.D., Al Charest, Ph.D., M.Sc., and Ralph Weissleder, M.D., Ph.D., also contributed to this work.

Such implants could one day provide up-to-the-minute information about what a tumor is doing—whether it is growing or shrinking, how it is responding to treatment, and whether it has metastasized or is about to do so. "What this does is basically take the lab and put it in the patient," said Dr. Cima.

The devices, which could be implanted at the time of biopsy, also could be tailored to monitor chemotherapy agents, allowing doctors to determine whether cancer drugs are reaching the tumors. They also can be designed to measure acidity (pH) or oxygen levels, which reveal tumor metabolism and how it is responding to therapy.

The cylindrical, 5-millimeter implant is made of high-density polyethylene encased in a polycarbonate membrane with 10-nanometer-diameter pores. Magnetic nanoparticles coated with antibodies specific to the target molecules are loaded into the device. Target molecules enter the implant through the polycarbonate membrane, binding to the nanoparticles and causing them to clump together. That clumping can be detected by magnetic resonance imaging (MRI) because the aggregated nanoparticles produce a marked change in the MRI signal associated with the implanted device. The researchers observed measurable changes within 1 day of implantation.

In the published work, the investigators transplanted human tumors into test mice and then used the implants to track levels of human chorionic gonadotropin, a hormone produced by the human tumor cells. Dr. Cima said he believes an implant to test for pH levels could be commercially available in a few years, followed by devices to test for complex chemicals such as other hormones and drugs.

This work, which is detailed in the paper "Implantable diagnostic device for cancer monitoring," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Possible Futures

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project