Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Super tiny technology could power superfast airplanes

To create the graphene particles, the researchers remove carbon dioxide molecules from graphite oxide (top two molecules), which leaves an irregular bond pattern that creates a buckle in the otherwise flat graphene molecule (bottom molecule). This ridge prevents the graphene molecule from folding back to a stack of graphite. (Image: Courtesy of Aksay Laboratory)
To create the graphene particles, the researchers remove carbon dioxide molecules from graphite oxide (top two molecules), which leaves an irregular bond pattern that creates a buckle in the otherwise flat graphene molecule (bottom molecule). This ridge prevents the graphene molecule from folding back to a stack of graphite. (Image: Courtesy of Aksay Laboratory)

Abstract:
Supersonic aircraft may get a boost in speed from the tiniest of manmade particles

Super tiny technology could power superfast airplanes

Princeton, NJ | Posted on July 20th, 2009

An interdisciplinary team of scientists led by Princeton engineers has been awarded a $3 million grant to study how fuel additives made of tiny particles known as nanocatalysts can help supersonic jets fly faster and make diesel engines cleaner and more efficient.

Composed of snippets of sheets of carbon that are only a single atom thick, the particles have been shown to help fuels ignite and burn faster, a quality that could usher in the next generation of combustion engines. The Princeton team hopes to better understand why the nanocatalyst helps fuel ignite and what kinds of particles would work best for building the engines of the future.

"Right now we don't know what actual reactions enhance the combustion rates when the particles are added to fuels," said Ilhan Aksay, a professor of chemical engineering at Princeton and the lead investigator on the project. "If we understand it further, we can make it more effective."

The funding, which comes from the Air Force as part of the 2009 American Recovery and Reinvestment Act Research Program, will be used to tackle a fundamental barrier to designing faster supersonic aircraft. For aircraft already flying quicker than the speed of sound to travel even faster, their engines must operate at faster speeds and fuel must move through them more rapidly, but the ignition time and burn rate of current jet fuels limits the speed of the engines.

"To fly at highly supersonic speeds one needs to run the propulsion system at supersonic speed to maximize its efficiency, but there is little time to mix, ignite and extract energy from the fuel," said Richard Yetter, a professor of mechanical engineering at Pennsylvania State University who is a principal investigator on the project. "To make the planes go faster, we need to burn fuel faster."

The Princeton-led team has proposed a solution based on the use of graphene -- molecular sheets of carbon atoms. In 2003, Aksay and his chemical engineering colleague, Professor Robert Prud'homme, developed the first commercially viable technique for making graphene by using a chemical process to split graphite into its ultrathin individual sheets. The resulting flakes are 200- to 500-nanometers wide, making the largest of them about one-hundredth the width of an average human hair.

Graphene exhibits unusual physical and electrical properties and has been lauded for its potential in ultrafast and light electronic technologies such as computers and digital displays. Aksay and his colleagues are hoping to leverage another characteristic of the graphene particles: When small amounts are added to liquid fuels, they lower the temperature at which the fuel ignites.

"The concentration of the nanocatalyst in the fuel would be very small," Aksay said. "The idea of being able to put in a very small quantity and have such a dramatic effect is important."

The catalyst might also be used to reduce the amount of nitric oxide produced by diesel engines or accelerate soot oxidation rates, which could reduce the pollution and fuel use. The graphene particles might also be used in liquid propellants for thrusters that help satellites position themselves in space.

Aksay said his research team blends expertise in various fields. It includes several other Princeton professors: Annabella Selloni and Roberto Car of chemistry; and Frederick Dryer of mechanical and aerospace engineering. Additional researchers from other universities include: Mark Barteau of chemical engineering from the University of Delaware; Jennifer Wilcox of energy resources engineering from Stanford University; and Michael Zachariah of mechanical engineering and chemistry from the University of Maryland.

"This is a truly interdisciplinary project," Aksay said. "Nowadays the research is so collaborative, if you sit in your office and work all by yourself, you will miss out on a lot."

####

About Princeton
Princeton simultaneously strives to be one of the leading research universities and the most outstanding undergraduate college in the world. As a research university, it seeks to achieve the highest levels of distinction in the discovery and transmission of knowledge and understanding, and in the education of graduate students. At the same time, Princeton is distinctive among research universities in its commitment to undergraduate teaching.

The University provides its students with academic, extracurricular and other resources—in a residential community committed to diversity in its student body, faculty and staff—that help them achieve at the highest scholarly levels and prepare them for positions of leadership and lives of service in many fields of human endeavor.

Through the scholarship and teaching of its faculty, and the many contributions to society of its alumni, Princeton seeks to fulfill its informal motto: “Princeton in the Nation’s Service and in the Service of All Nations."

For more information, please click here

Contacts:
Office of Communications
Princeton University
22 Chambers Street, Suite 201
Princeton, N.J. 08542
Tel (609) 258-3601, Fax (609) 258-1301

Copyright © Princeton

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Chemistry

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Military

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Aerospace/Space

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Global Aerospace Applications Nanocoatings Industry 2015: Acute Market Reports July 21st, 2015

NASA-Funded Study Reduces Cost of Human Missions to Moon and Mars by Factor of Ten July 20th, 2015

University of Puerto Rico and NASA in the news – XEI reports July 16th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project