Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Muscular protein bond -- strongest yet found in nature

The Titin-Telethonin-complex, fixed at the tip of an atomic force-microscope
The Titin-Telethonin-complex, fixed at the tip of an atomic force-microscope

Abstract:
Single-molecule experiments show how mechanical strength in muscles is anchored in the titin-telethonin complex

Muscular protein bond -- strongest yet found in nature

Hamburg, Germany | Posted on July 20th, 2009

A research collaboration between Munich-based biophysicists and a structural biologist in Hamburg is helping to explain why our muscles, and those of other animals, don't simply fall apart under stress. Their findings may have implications for fields as diverse as medical research and nanotechnology.

The real strength of any skeletal muscle doesn't start with exercise; it comes ultimately from nanoscale biological building blocks. One key element is a bond involving titin, a giant among proteins. Titin is considered a molecular "ruler" along which the whole muscle structure is aligned, and it acts as an elastic spring when a muscle is stretched.

Titin plays a role in a wide variety of muscle functions, and these in turn hinge on the stability with which it is anchored in a structure called the sarcomeric Z-disk. Research published in 2006 showed this anchor to be a rare palindromic arrangement of proteins - that is, it "reads" the same way forward and backward - in which two titin molecules are connected by another muscle protein, telethonin. Simulations have pointed toward a network of tight hydrogen bonds linking titin and telethonin as a source of stability. But direct measurements that would further advance this investigation have been lacking, until today's publication of experimental results in the Proceedings of the National Academy of Sciences (PNAS). The authors are Prof. Matthias Rief and Morten Bertz, M.Sc., of the Technische Universität München (TUM) - who also are members of a Munich-based "excellence cluster" called the Center for Integrated Protein Science - and Prof. Matthias Wilmanns of the European Molecular Biology Laboratory in Hamburg.

These first-ever measurements of mechanical stability in the titin-telethonin protein complex show it to be a highly "directed" bond, extremely strong but only along the lines of natural physiological stress. Thus even at the nanoscale, this complex is oriented to resist forces that reflect the macroscale function of the organism - contraction and relaxation of skeletal muscles.

Advanced biological and physical techniques gave the researchers a handle on this nanoscale "anchor" - basically allowing them to pull on the bond from various directions and measure its performance under stress. Single-molecule force spectroscopy was performed on a custom-built atomic force microscope. Well characterized mechanical "fingerprints" made it possible to distinguish single-molecule events from non-specific interactions as well as from multi-molecule events.

Their measurements confirm that in the direction that corresponds to muscular contraction and relaxation, the titin-telethonin complex is the strongest protein bond found so far in nature. When force was applied in different directions, the proteins of the complex slid apart. The bond can be compared to a mechanical hook that holds fast when pulled upward but otherwise uncouples easily.

The researchers anticipate that directedness of protein bonds will be an important concept in studying a variety of other molecular complexes that nature subjects to mechanical strain in living organisms. Better understanding could potentially inform physiological research and biomedical applications. Such insights might also inspire biomimetic research and design for nanotechnology.



The paper is "The Titin-Telethonin complex: A directed, super stable molecular bond in the muscle Z-disk," by Morten Bertz, Matthias Wilmanns, and Matthias Rief, published in the Proceedings of the National Academy of Sciences, July 20, 2009. The research is supported by the Deutsche Forschungsgemeinschaft, DFG grant RI990/3/1.


####

About Technische Universitaet Muenchen
Technische Universität München (TUM) is one of Germany's leading universities. It has roughly 420 professors, 6,500 academic and non-academic staff (including those at the university hospital "Rechts der Isar"), and 23,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost in Singapore. TUM is dedicated to the ideal of a top-level research based entrepreneurial university.

For more information, please click here

Contacts:
Prof. Matthias Rief
Chair for Experimental Physics
Technische Universität München (TUM)
James-Franck-Str. 1
85748 Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523
E-mail:

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Nanomedicine

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE