Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Controlling the electronic surface properties of a material

A two-dimensional “electronic metamaterial” is generated by supramolecular self assembly on a metal surface. The periodic influence of the porous molecular network on the otherwise free-electron-like surface state results in the formation of an electronic band.
A two-dimensional “electronic metamaterial” is generated by supramolecular self assembly on a metal surface. The periodic influence of the porous molecular network on the otherwise free-electron-like surface state results in the formation of an electronic band.

Abstract:
It's commonly accepted that electrical resistance of a given material cannot be adjusted as is the case with, for example, density and color. However, Dr Meike Stöhr and her collaborators have now succeeded in developing a new method to selectively tune surface properties such as resistance.

The interdisciplinary team of physicists and chemists have developed a substance which, after heating on a copper surface, exhibits a two dimensional network with nanometer sized pores. The interaction of this network with the existing electron gas on the metal surface leads to the following effect: the electrons underneath the network are pushed into the pores to form small bunches of electrons called quantum dots.

Controlling the electronic surface properties of a material

Switzerland | Posted on July 16th, 2009

Great potential for materials research

By varying parameters such as the height and diameter of the pores the possibility arises to selectively tune the properties of the material. Further possibilities arise from the ability to fill the pores with different molecules. This allows direct access to the properties of the material which are dependent on the electronic structure, such as conductivity, reflectivity and surface catalysis properties. This will lead to the emergence of new materials with adjustable electronic properties.

The underlying physical mechanisms can best be understood by a comparison of the electron-gas with waves in water. Waves on a water surface are reflected by any obstacle they meet. If the obstacle on the surface in question resembles a honeycomb structure, standing waves are set up in each cell of the honeycomb. This then leads to a wave pattern representative of the honeycomb structure of the same size and shape. "Applying this analogy to the electron gas, we see that the interaction of the network structure with the electron gas on the metal surface confines the electrons giving rise to a characteristic electron wave structure of the new material." says Stöhr.

These pore networks are good candidates for new meta-materials. These are man-made materials which, due to their period architecture, have specific optical and electronic properties not found in nature. These properties can be tuned by changing the properties of their component materials. In the case of pore networks, it is the electronic surface properties which can be tuned by careful selection of the nano-pores.

The University of Basel and the Paul Scherrer Institute are long-term partners of the Swiss Nanoscience Institute (SNI), which is also financed by the Canton of Aargau. The SNI also includes both the Nationaler Forschungsschwerpunkt Nanowissenschaften which was founded in 2001, and the Argovia-Netzwerk, founded in 2006 and also financed by the Canton of Aargau. A key partner in this project was the Swiss Light Source of the Paul Scherrer institute.

####

About Paul Scherrer Institut (PSI)
Since its founding it has developed into a successful, internationally renowned research institute for the natural and engineering sciences. This success story is due both to the professional competence, creativity and dedication of its staff, and to the financial support of the ETH Board, the Swiss Federal Council and Parliament – ultimately the Swiss taxpayers.

Education and knowledge are the most important resources in Switzerland, upon which our prosperity relies. The creation of new knowledge and the provision of high quality, internationally competitive education are goals of PSI. These goals are achieved through our own research and by supporting the work of researchers from the two ETHs in Zurich and Lausanne, universities, other research institutes and technical colleges. New knowledge creates new applications beneficial to society, promotes a competitive economy and leads to a better understanding of our world.

For more information, please click here

Contacts:

Paul Scherrer Institut
5232 Villigen PSI, Switzerland
Phone +41 (0)56 310 21 11
Fax +41 (0)56 310 21 99

Communications Officer:
Dagmar Baroke
Phone +41 (0)56 310 29 16

Copyright © Paul Scherrer Institut (PSI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Quantum Dots/Rods

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Shining a light on quantum dots measurement January 15th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

TCL 55” Quantum Dot TV with Color IQ™ Optics Debuts at CES 2015: TVs with OLED-quality color at an affordable price coming soon to the US and Europe January 5th, 2015

Research partnerships

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Gold nanoparticles show promise for early detection of heart attacks: NYU School of Engineering Professors collaborate with researchers from Peking University on a new test strip January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE