Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New geothermal heat extraction process to deliver clean power generation: PNNL's advanced heat recovery method makes most of low-temp 'hot rock' resources

PNNL's introduction of a metal-organic heat carrier, or MOHC, in the biphasic fluid may help improve thermodynamic efficiency of the heat recovery process. This image represents the molecular makeup of one of several MOHCs.
PNNL's introduction of a metal-organic heat carrier, or MOHC, in the biphasic fluid may help improve thermodynamic efficiency of the heat recovery process. This image represents the molecular makeup of one of several MOHCs.

Abstract:
A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energy's Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources.

New geothermal heat extraction process to deliver clean power generation: PNNL's advanced heat recovery method makes most of low-temp 'hot rock' resources

RICHLAND, W | Posted on July 16th, 2009

The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

"By the end of the calendar year, we plan to have a functioning bench-top prototype generating electricity," predicts PNNL Laboratory Fellow Pete McGrail. "If successful, enhanced geothermal systems like this could become an important energy source." A technical and economic analysis conducted by the Massachusetts Institute of Technology estimates that enhanced geothermal systems could provide 10 percent of the nation's overall electrical generating capacity by 2050.

PNNL's conversion system will take advantage of the rapid expansion and contraction capabilities of a new liquid developed by PNNL researchers called biphasic fluid. When exposed to heat brought to the surface from water circulating in moderately hot, underground rock, the thermal-cycling of the biphasic fluid will power a turbine to generate electricity.

To aid in efficiency, scientists have added nanostructured metal-organic heat carriers, or MOHCs, which boost the power generation capacity to near that of a conventional steam cycle. McGrail cited PNNL's nanotechnology and molecular engineering expertise as an important factor in the development, noting that the advancement was an outgrowth of research already underway at the lab.

"Some novel research on nanomaterials used to capture carbon dioxide from burning fossil fuels actually led us to this discovery," said McGrail. "Scientific breakthroughs can come from some very unintuitive connections."

PNNL is receiving $1.2 million as one of 21 DOE Energy Efficiency and Renewable Energy grants through the Geothermal Technologies Program.

Some of the research was conducted in EMSL, DOE's Environmental Molecular Sciences Laboratory on the PNNL campus.

####

About PNNL
Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,250 staff, has a $918 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

EMSL, The Environmental Molecular Sciences Laboratory is a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental insights and create technologies for energy, the environment and human health.

For more information, please click here

Contacts:
Greg Koller
Communications & External Relations
P.O. Box 999, K1-36
Richland, WA 99352
Work Phone: (509) 372-4864
E-mail:
Home Phone: (509) 736-6065
Cell: (509) 539-7239

Copyright © PNNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Click to watch PNNL's Pete McGrail describe the process.

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project