Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > EV Group to Collaborate with Applied Materials On Thin Wafer Bonding Technology for 3D IC Development

Abstract:
EV Group (EVG) today announced a joint effort with Applied Materials, Inc. to develop wafer bonding processes for the manufacture of through-silicon vias (TSVs) in three-dimensional integrated circuit (3D IC) packaging applications. The two companies will be working together as members of the EMC-3D Semiconductor 3D Equipment and Materials Consortium.

EV Group to Collaborate with Applied Materials On Thin Wafer Bonding Technology for 3D IC Development

St. Florian, Austria | Posted on July 16th, 2009

Growing consumer demand for smaller, lower-power electronic devices with greater functionality is driving the need for TSV technology - a new approach to increase packaging density by vertically stacking chips. However, while conventional ICs use wafers approximately 750-um thick, 3D ICs require thinner wafers of about 100 um or less. Processed by themselves, these paper-thin wafers lose structural and edge integrity in high-temperature, high-stress processes such as metallization, which poses manufacturing challenges and impacts device reliability. EVG and Applied will work together to address these issues by bonding temporary carrier wafers to device wafers prior to thinning. The carriers will support the ultra-thin device wafers during subsequent process steps and can be removed afterwards.

The collaboration will explore the use of silicon and glass carrier wafers to determine substrate stability using EVG's wafer bonding and thin-wafer handling expertise and Applied's advanced etch, CVD, PVD and CMP process systems. The goal of this effort is to yield baseline processes and recommendations for the use of carrier-mounted wafers throughout the individual process steps offered by both parties. Results from the partnership will be shared with EMC-3D member companies.

"This is a continuation of our strategy to form alliances with leading equipment suppliers such as EVG to deliver fully-characterized TSV process flows to accelerate customers' time to market," said Hans Stork, group vice president and chief technology officer of Applied's Silicon Systems Group. "We look forward to working with EVG at Applied's Maydan Technology Center in advancing this disruptive technology and expediting the adoption of TSVs for mainstream manufacturing."

"We are excited to collaborate with an industry leader like Applied, to expedite temporary bonding and debonding capabilities for 3D IC development," said Markus Wimplinger, Corporate Technology Development and IP Director at EV Group "As a co-founder of EMC-3D, EVG is committed to the consortium's mission to develop cost-effective and manufacturable TSVs for advanced semiconductors. This opportunity to work with Applied complements those efforts and brings us closer to realizing 3D IC production for our customers."

About Applied Materials

Applied Materials, Inc. is the global leader in Nanomanufacturing Technology(TM) solutions with a broad portfolio of innovative equipment, service and software products for the fabrication of semiconductor chips, flat panels, solar photovoltaic cells, flexible electronics and energy efficient glass. At Applied Materials, we apply Nanomanufacturing Technology to improve the way people live. Learn more at www.appliedmaterials.com.

####

About EV Group (EVG)
EV Group (EVG) is a world leader in wafer-processing solutions for semiconductor, MEMS and nanotechnology applications. Through close collaboration with its global customers, the company implements its flexible manufacturing model to develop reliable, high-quality, low-cost-of-ownership systems that are easily integrated into customers' fab lines. Key products include wafer bonding, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coaters, cleaners and inspection systems.

In addition to its leading market share for wafer bonders, EVG holds a leading position in NIL and lithography for advanced packaging and MEMS. Along these lines, the company co-founded the EMC-3D consortium in 2006 to create and help drive implementation of a cost-effective through-silicon via (TSV) process for major ICs and MEMS/sensors. Other target semiconductor-related markets include silicon-on-insulator (SOI), compound semiconductor and silicon-based power-device solutions.

Founded in 1980, EVG is headquartered in St. Florian, Austria, and operates via a global customer support network, with subsidiaries in Tempe, Ariz.; Albany, N.Y.; Yokohama and Fukuoka, Japan; Seoul, Korea and Chung-Li, Taiwan. The company's unique Triple i-approach (invent - innovate - implement) is supported by a vertical integration, allowing EVG to respond quickly to new technology developments, apply the technology to manufacturing challenges and expedite device manufacturing in high volume. More information is available at www.EVGroup.com.

* CVD = chemical vapor deposition; PVD = physical vapor deposition; CMP = chemical-mechanical planarization

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE