Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DuPont, Lehigh Scientists Refine DNA Sorting of Carbon Nanotubes Technique, Creates First Approach to Sorting Nanotubes by Species

Graphic: Refined process for DNA sorting of carbon nanotubes by species – model of a DNA barrel on a (8,4) nanotube formed by rolling up a 2D DNA sheet composed of two hydrogen-bonded anti-parallel ATTTATTTATTT strands..  (Graphic is courtesy of Lehigh University.).
Graphic: Refined process for DNA sorting of carbon nanotubes by species – model of a DNA barrel on a (8,4) nanotube formed by rolling up a 2D DNA sheet composed of two hydrogen-bonded anti-parallel ATTTATTTATTT strands.. (Graphic is courtesy of Lehigh University.).

Abstract:
Discovery Provides Significant Step in Advancing Nano-Electronics, Nano-Photovoltaics

DuPont, Lehigh Scientists Refine DNA Sorting of Carbon Nanotubes Technique, Creates First Approach to Sorting Nanotubes by Species

Wilmington, DE | Posted on July 16th, 2009

Scientists at DuPont and Lehigh University have refined a technique, first published in 2003, to sort carbon nanotubes using specific sequences of DNA. This technique offers the first demonstration that nanotubes can be sorted by size, property and symmetry (chirality).

This new finding, reported in the current issue (Vol. 460 No. 7252) of the journal Nature, is titled "DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes." The study was co-authored by DuPont researchers Ming Zheng and Xiamin Tu, with Lehigh University professor of chemical engineering Anand Jagota and student Suresh Manohar. The research was funded by a National Science Foundation grant to a collaborative team from Lehigh University, MIT and DuPont.

There has been great interest in the revolutionary electrical, mechanical and thermal properties of single walled carbon nanotubes (SWNTs) since their discovery in the early 1990s. However, single walled carbon nanotubes are produced as complex mixtures of different nanotube species with different properties, greatly limiting their applications. In 2003, a publication in Science by DuPont scientists, including Zheng, disclosed a method to separate carbon nanotubes using DNA. This was the first demonstration that the problem of sorting SWNTs could be solved. DuPont has continued to investigate these materials, most recently publishing a chemical approach to separating metallic and semi-conducting nanotubes in the Jan. 9 edition of Science. The current development is a significant advancement in this pioneering field, perfecting the only approach that uses biological molecules to carry out a refined sorting of carbon nanotubes, separating nanotubes with different optical, electronic and chemical properties.

"Our technique is similar to sorting snowflakes by wrapping DNA around each flake," Zheng said. "Nanotubes come in many sizes and designs, and each type offers unique properties for uses that can range from transistors for electronics, light sources for displays or conducting films for photovoltaic materials. The difficult part of our approach is identifying which DNA sequence is most efficient at separation. Our approach was a bit like probing into the DNA library to determine sequences. Through this approach we tried over 350 sequences and identified more than 20 that showed useful separation properties."

During the 18-month research program, Zheng and Tu set the course for the experimental work to identify the DNA sequences, and Jagota and Manohar developed the molecular models. The approach builds on the 2003 findings that a DNA sequence will wrap around a SWNT and then interact with micro-size beads in an anion exchange chromatography set-up in a way that depends on the type of nanotube to which the DNA is attached. This occurs because the carbon nanotube-DNA hybrids have different electrostatic properties that depend on the nanotubes' diameter and electronic behavior. The latest study has determined that the interaction is dependent on both the type of nanotube and the type of DNA. As a result, the research team focused on identifying the DNA sequences that performed the best with their corresponding SWNT species. The DNA library is vast, making the chance of finding these sequences through trial-and-error exceedingly low. The research team identified an approach called "sequence expansion" to systematically explore the DNA library in a confined and progressive manner. The result was the identification of more than 20 DNA sequences that reacted favorably with 12 species of nanotubes, sorting them with purity level of 80 to 90 percent.

"We are at a historic moment when biology and materials science meet at the nano meter scale, and this opens up lots of opportunities for new science and technology development," Zheng said. "We think this is the ultimate solution to isolate and identify every species of nanotube, allowing us to take advantage of the highest performance nanotube to create high performance nano-electronic and nano-photovoltaic materials and devices."

DuPont Science & Technology provides technologies and transformational options for new and existing businesses, building on a long, rich legacy of leading-edge science and innovation. Products commercialized over the last five years accounted for 35 percent of the company's total revenue.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

####

About DuPont
Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel.

For more information, please click here

Contacts:
Michelle Reardon
302-774-4005

Copyright © DuPont

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes”

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Nanotubes/Buckyballs

Elsevier Publishes New Content on Graphene and Materials Science: Books Discuss Properties and Emerging Applications of Carbon Nanotubes, Graphene and Nanomaterials September 25th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Nanoelectronics

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Alliances/Partnerships/Distributorships

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

Solar/Photovoltaic

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE