Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > DuPont, Lehigh Scientists Refine DNA Sorting of Carbon Nanotubes Technique, Creates First Approach to Sorting Nanotubes by Species

Graphic: Refined process for DNA sorting of carbon nanotubes by species – model of a DNA barrel on a (8,4) nanotube formed by rolling up a 2D DNA sheet composed of two hydrogen-bonded anti-parallel ATTTATTTATTT strands..  (Graphic is courtesy of Lehigh University.).
Graphic: Refined process for DNA sorting of carbon nanotubes by species – model of a DNA barrel on a (8,4) nanotube formed by rolling up a 2D DNA sheet composed of two hydrogen-bonded anti-parallel ATTTATTTATTT strands.. (Graphic is courtesy of Lehigh University.).

Abstract:
Discovery Provides Significant Step in Advancing Nano-Electronics, Nano-Photovoltaics

DuPont, Lehigh Scientists Refine DNA Sorting of Carbon Nanotubes Technique, Creates First Approach to Sorting Nanotubes by Species

Wilmington, DE | Posted on July 16th, 2009

Scientists at DuPont and Lehigh University have refined a technique, first published in 2003, to sort carbon nanotubes using specific sequences of DNA. This technique offers the first demonstration that nanotubes can be sorted by size, property and symmetry (chirality).

This new finding, reported in the current issue (Vol. 460 No. 7252) of the journal Nature, is titled "DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes." The study was co-authored by DuPont researchers Ming Zheng and Xiamin Tu, with Lehigh University professor of chemical engineering Anand Jagota and student Suresh Manohar. The research was funded by a National Science Foundation grant to a collaborative team from Lehigh University, MIT and DuPont.

There has been great interest in the revolutionary electrical, mechanical and thermal properties of single walled carbon nanotubes (SWNTs) since their discovery in the early 1990s. However, single walled carbon nanotubes are produced as complex mixtures of different nanotube species with different properties, greatly limiting their applications. In 2003, a publication in Science by DuPont scientists, including Zheng, disclosed a method to separate carbon nanotubes using DNA. This was the first demonstration that the problem of sorting SWNTs could be solved. DuPont has continued to investigate these materials, most recently publishing a chemical approach to separating metallic and semi-conducting nanotubes in the Jan. 9 edition of Science. The current development is a significant advancement in this pioneering field, perfecting the only approach that uses biological molecules to carry out a refined sorting of carbon nanotubes, separating nanotubes with different optical, electronic and chemical properties.

"Our technique is similar to sorting snowflakes by wrapping DNA around each flake," Zheng said. "Nanotubes come in many sizes and designs, and each type offers unique properties for uses that can range from transistors for electronics, light sources for displays or conducting films for photovoltaic materials. The difficult part of our approach is identifying which DNA sequence is most efficient at separation. Our approach was a bit like probing into the DNA library to determine sequences. Through this approach we tried over 350 sequences and identified more than 20 that showed useful separation properties."

During the 18-month research program, Zheng and Tu set the course for the experimental work to identify the DNA sequences, and Jagota and Manohar developed the molecular models. The approach builds on the 2003 findings that a DNA sequence will wrap around a SWNT and then interact with micro-size beads in an anion exchange chromatography set-up in a way that depends on the type of nanotube to which the DNA is attached. This occurs because the carbon nanotube-DNA hybrids have different electrostatic properties that depend on the nanotubes' diameter and electronic behavior. The latest study has determined that the interaction is dependent on both the type of nanotube and the type of DNA. As a result, the research team focused on identifying the DNA sequences that performed the best with their corresponding SWNT species. The DNA library is vast, making the chance of finding these sequences through trial-and-error exceedingly low. The research team identified an approach called "sequence expansion" to systematically explore the DNA library in a confined and progressive manner. The result was the identification of more than 20 DNA sequences that reacted favorably with 12 species of nanotubes, sorting them with purity level of 80 to 90 percent.

"We are at a historic moment when biology and materials science meet at the nano meter scale, and this opens up lots of opportunities for new science and technology development," Zheng said. "We think this is the ultimate solution to isolate and identify every species of nanotube, allowing us to take advantage of the highest performance nanotube to create high performance nano-electronic and nano-photovoltaic materials and devices."

DuPont Science & Technology provides technologies and transformational options for new and existing businesses, building on a long, rich legacy of leading-edge science and innovation. Products commercialized over the last five years accounted for 35 percent of the company's total revenue.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

####

About DuPont
Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel.

For more information, please click here

Contacts:
Michelle Reardon
302-774-4005

Copyright © DuPont

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“DNA Sequence Motifs for Structure-Specific Recognition and Separation of Carbon Nanotubes”

Related News Press

News and information

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Universality of charge order in cuprate superconductors: Charge order has been established in another class of cuprate superconductors, highlighting the importance of the phenomenon as a general property of these high-Tc materials December 22nd, 2014

Alliances/Partnerships/Distributorships

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

New 'electronic skin' for prosthetics, robotics detects pressure from different directions December 10th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

Research partnerships

Quantum physics just got less complicated December 22nd, 2014

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Unraveling the light of fireflies December 17th, 2014

Solar/Photovoltaic

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE