Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > What makes nanowires so attractive

Abstract:
For a Chinese-German research team the "force of attraction" of minute nanowires is not only based on their special scientific interests: Physicists of the Chinese University of Hongkong and the Friedrich Schiller University Jena were able to prove for the first time that cobalt doped nanowires made from zinc oxide have intrinsic ferromagnetic characteristics - and therefore in principle work like tiny bar magnets. The scientists around Prof. Dr. Quan Li (Hong Kong) and Prof. Dr. Carsten Ronning (Jena) will publish the results of their research in the current online edition of the well renowned journal "Nature Nanotechnology."

What makes nanowires so attractive

China and Germany | Posted on July 15th, 2009

For that Prof. Ronning and his Jena team used their know-how about the preparation of semiconductor nanostructures and their optical characteristics, and doped zinc oxide wires. These were then examined for their magnetic properties by the Chinese colleagues around Prof. Li - an acknowledged expert in the field of electron microscopy. The innovative combination of two analytical methods - transmission electron microscopy and electron magnetic chiral dichroism - is responsible for the surprising outcome. "We realized that cobalt doping gives intrinsic ferromagnetic properties while iron does not", comments Prof. Li. Further investigations must now clarify where these differences come from.

The production of magnetic semiconducting nanowires has so far been basic research, as Quan Li emphasizes. But medium term "we might be able to help push open the door to spintronics." "Spintronics" is a new field in semiconductor physics: While traditional semiconductor electronics is based on the electrons' electrical charge, spintronics additionally uses the spin, the angular momentum, of the electrons. "That momentum can occur in two directions resulting in a magnetic moment," explains Prof. Ronning.

This new development could bring real advantages: Common electronic components need 10,000 to 100,000 electrons for a single switching action. Semiconductor components switching only the spin of electrons need only one electron to transport the necessary information. "That means that spintronic semiconductors could switch much faster than common electronic components", says Quan Li. Furthermore they would need only a fraction of the energy.

The precondition for a further development of spintronics however is, that semiconductors with intrinsic ferromagnetic characteristics can be produced at all. Intense worldwide research has been conducted for about a decade - so far with moderate success: There has not been a method clearly proving intrinsic ferromagnetism so far. Thanks to the current results the physicists have taken the field an important step further.

The original publication Z. H. Zhang, Xuefeng Wang, J. B. Xu, S. Muller, C. Ronning & Quan Li. Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures can be found under: www.nature.com/doifinder/10.1038/nnano.2009.181

####

About 7thSpace
7thSpace is an online portal covering many different topics. Whether you're a business owner, webmaster, or just looking for some fun - we have something to offer for everybody.

For more information, please click here

Contacts:
Prof. Dr. Quan Li
Department of Physics, The Chinese University of Hong Kong
Phone: + (852) 2609 6323

www.phy.cuhk.edu.hk/qli/

Prof. Dr. Carsten Ronning
Institute for Solid State Physics, Friedrich Schiller University Jena
Phone: + (49) 3641 947300

www.nano.uni-jena.de/en

Copyright © 7thSpace

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

French Institutes IRT Nanoelec and CMP Team up to Offer World’s First Service for Post-process 3D Technologies on Multi-Project-Wafer March 5th, 2015

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Spintronics

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Discoveries

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

The George Washington University Opens Science and Engineering Hall, Largest Building of Its Kind in D.C.: Building Represents Significant Investment in Research Programs and Facilities; Commitment to Solve Global Problems, Improve Lives of Millions March 5th, 2015

Anousheh Ansari Wins the National Space Society's Space Pioneer Award for "Service to the Space Community" March 5th, 2015

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

Get ready for NanoDays! March 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE