Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Trojan Horse for Ovarian Cancer--Nanoparticles Turn Immune System Soldiers against Tumor Cells

Dr. Jose Conejo-Garcia (right) with graduate student Juan Cubillos-Ruiz
Dr. Jose Conejo-Garcia (right) with graduate student Juan Cubillos-Ruiz

Abstract:
In a feat of trickery, Dartmouth Medical School immunologists have devised a Trojan horse to help overcome ovarian cancer, unleashing a surprise killer in the surroundings of a hard-to-treat tumor.

Trojan Horse for Ovarian Cancer--Nanoparticles Turn Immune System Soldiers against Tumor Cells

Hanover, NH | Posted on July 14th, 2009

Using nanoparticles--ultra small bits--the team has reprogrammed a protective cell that ovarian cancers have corrupted to feed their growth, turning the cells back from tumor friend to foe. Their research, published online July 13 for the August Journal of Clinical Investigation, offers a promising approach to orchestrate an attack against a cancer whose survival rates have barely budged over the last three decades.

"We have modulated elements of the tumor microenvironment that are not cancer cells, reversing their role as accomplices in tumor growth to attackers that boost responses against the tumor," said Dr. Jose Conejo-Garcia, assistant professor of microbiology and immunology and of medicine, who led the research. "The cooperating cells hit by the particles return to fighters that immediately kill tumor cells."

The study, in mice with established ovarian tumors, involves a polymer now in clinical trials for other tumors. The polymer interacts with a receptor that senses danger to activate cells that trigger an inflammatory immune response.

The Dartmouth work focuses on dendritic cells--an immune cell particularly abundant in the ovarian cancer environment. It does take direct aim at tumor cells, so it could be an amenable adjunct to other current therapies.

"That's the beautiful part of story--people usually inject these nanoparticles to target tumor cells. But we found that these dendritic cells that are commonly present in ovarian cancer were preferentially and avidly engulfing the nanoparticles. We couldn't find any tumor cells taking up the nanoparticles, only the dendritic cells residing in the tumor," explained Juan R. Cubillos-Ruiz, graduate student and first author.

Dendritic cells are phagocytes--the soldiers of the immune system that gobble up bacteria and other pathogens, but ovarian cancer has co-opted them for its own use, he continued. "So we were trying to restore the attributes of these dendritic cells--the good guys; they become Trojan horses."

Cancer is more than tumor cells; many other circulating cells including the dendritic phagocytes converge to occupy nearby space. The dendritic cells around ovarian cancer scoop up the nanocomplexes, composed of a polymer and small interfering RNA (siRNA) molecules to silence their immunosuppressive activity.

Nanoparticle incorporation transforms them from an immunosuppressive to an immunostimulatory cell type at tumor locations, provoking anti-tumor responses and also directly killing tumor cells. The effect is particularly striking with an siRNA designed to silence the gene responsible for making an immune protein called PD-L.

The new findings also raise a warning flag about the use of gene silencing complexes in cancer treatment. Inflammation is a helpful immune response, but the researchers urge caution when using compounds that can enhance inflammation in a patient already weakened by cancer.

Ovarian cancer, which claims an estimated 15,000 US lives a year, is an accessible disease for nanoparticle delivery, according to the investigators. Instead of systemic administration, complexes can be put directly into the peritoneal cavity where the phagocytes take them up.

Samples of human ovarian cancer cells show similar responses to nanoparticle stimulation, the researchers observed, suggesting feasibility in the clinical setting. It could be part of a "multimodal approach," against ovarian cancer, said Conejo-Garcia also a member of the Dartmouth's Norris Cotton Cancer Center. "The prevailing treatment is surgical debulking, followed by chemotherapy. Our findings could complement those because they target not the tumor cells themselves, but different cells present around the tumor."

Co-authors are Xavier Engle, Uciane K. Scarlett, Diana Martinez, Amorette Barber, Raul Elgueta, Li Wang, Yolanda Nesbeth and Charles Sentman of Dartmouth; Yvon Durant of University of New Hampshire, Andrew T Gewirtz of Emory, and Ross Kedl of University of Colorado.

The work was supported by grants from the National Institutes of Health, including the National Cancer Institute and National Center for Research Resources, a Liz Tilberis Award from the Ovarian Cancer Research Fund, and the Norris Cotton Cancer Center Nanotechnology Group Award.

Read an interview of Jose Conejo - Garcia with the Ovarian Cancer Research Fund, here:
www.ocrf.org/index.php?option=com_content&view=article&id=538:qaa-with-jose-conejo-garcia-md-phd&catid=61:ceo-blog&Itemid=131

####

About Dartmouth Medical School
Dartmouth Medical School is a beacon of discovery and learning, stimulating inquiry and harnessing ingenuity for new solutions and better health. Building on a legacy of excellence and collaboration, DMS, the nation's fourth-oldest medical school, cultivates leaders of vision and virtuosity who are transcending boundaries to transform medicine and science. It draws on the world-class resources of Dartmouth College and Dartmouth-Hitchcock Medical Center for broad interdisciplinary programs in biomedical research, education, patient care and service.

For more information, please click here

Contacts:

603-650-1492

Copyright © Dartmouth Medical School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project