Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanometrics Delivers Follow-On Unifire System to Leading Hard Drive Manufacturer

Abstract:
Nanometrics Incorporated (Nasdaq: NANO), a leading supplier of advanced process control metrology systems used primarily in the manufacturing of semiconductors, solar photovoltaics and high-brightness LEDs, today announced the delivery of a Unifire™ metrology system equipped with the
Advanced Film Capability (AFC) option.

Nanometrics Delivers Follow-On Unifire System to Leading Hard Drive Manufacturer

Milpitas, CA | Posted on July 14th, 2009

The Unifire technology configured with AFC enables the simultaneous, nondestructive measurement of film thickness and step height metrology within the industry's smallest test areas and targets. This system is a follow-on order currently being qualified to support a leading hard drive manufacturer's production capacity for advanced magnetic heads.

"We are pleased with the traction of the Unifire product in both the semiconductor and magnetic head manufacturing sectors. Unifire systems are being placed into specific segments that leverage the unique capabilities of the interferometer measurement technology," commented Michael Darwin, Vice President of the Unifire Product Group at Nanometrics. "Our customers are deploying the Unifire systems to monitor critical process parameters including device topography, film thickness and step height, many of which can only be observed non-destructively with our proprietary small-spot AFC technology."

Nanometrics' Unifire platform has been deployed across front-end manufacturing and advanced packaging processes in applications including lithography, etch, chemical mechanical polishing (CMP) and thin film deposition.

Forward Looking Statements

This press release contains forward-looking statements including, but not limited to, statements regarding the qualification and capabilities of Unifire metrology systems. Although Nanometrics believes that the expectations reflected in the forward-looking statements are reasonable,
actual results could differ materially from the expectations due to a variety of factors including difficulties with the qualification process. For additional information and considerations regarding the risks faced by Nanometrics, see its annual report on Form 10-K for the year ended December 27, 2008 as filed with the Securities and Exchange Commission, as well as
other periodic reports filed with the SEC from time to time. Nanometrics disclaims any obligation to update information contained in any forward-looking statement.

####

About Nanometrics
Nanometrics is a leader in the design, manufacture and marketing of high-performance process control metrology systems used primarily in the manufacturing of semiconductors, solar photovoltaics and high-brightness LEDs, as well as by customers in the silicon wafer and data storage industries. Nanometrics standalone and integrated metrology systems measure various thin film properties, critical dimensions, overlay control, topography, and optical, electrical and material properties, including the structural composition of silicon, compound semiconductor and photovoltaic devices, during various steps of the manufacturing process, from front end of line substrate manufacturing through die preparation for advanced packaging. These systems enable device manufacturers to improve yields, increase productivity and lower their manufacturing costs. The company maintains its headquarters in Milpitas, California, with sales and service offices worldwide. Nanometrics is traded on NASDAQ Global Market under the symbol NANO.

For more information, please click here

Contacts:
Nanometrics Contact:
Kevin Heidrich
408.545.6000 tel


Investor Relations Contact:
Claire McAdams
Headgate Partners LLC
530.265.9899 tel

Copyright © Nanometrics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project