Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Develops Novel Ion Trap for Sensing Force and Light

The NIST "stylus trap" can hold a single ion (electrically charged atom) above any of the three sets of concentric cylinders on the centerline. The device could be used as a stylus with a single atom "tip" for sensing very small forces or an interface for efficient transfer of individual light particles for quantum communications.

Credit: Maiwald, NIST
The NIST "stylus trap" can hold a single ion (electrically charged atom) above any of the three sets of concentric cylinders on the centerline. The device could be used as a stylus with a single atom "tip" for sensing very small forces or an interface for efficient transfer of individual light particles for quantum communications. Credit: Maiwald, NIST

Abstract:
Miniature devices for trapping ions (electrically charged atoms) are common components in atomic clocks and quantum computing research. Now, a novel ion trap geometry demonstrated at the National Institute of Standards and Technology (NIST) could usher in a new generation of applications because the device holds promise as a stylus for sensing very small forces or as an interface for efficient transfer of individual light particles for quantum communications.

NIST Develops Novel Ion Trap for Sensing Force and Light

Gaithersburg, MD | Posted on July 8th, 2009

The "stylus trap," built by physicists from NIST and Germany's University of Erlangen-Nuremberg, is described in Nature Physics.* It uses fairly standard techniques to cool ions with laser light and trap them with electromagnetic fields. But whereas in conventional ion traps, the ions are surrounded by the trapping electrodes, in the stylus trap a single ion is captured above the tip of a set of steel electrodes, forming a point-like probe. The open trap geometry allows unprecedented access to the trapped ion, and the electrodes can be maneuvered close to surfaces. The researchers theoretically modeled and then built several different versions of the trap and characterized them using single magnesium ions.

The new trap, if used to measure forces with the ion as a stylus probe tip, is about one million times more sensitive than an atomic force microscope using a cantilever as a sensor because the ion is lighter in mass and reacts more strongly to small forces. In addition, ions offer combined sensitivity to both electric and magnetic fields or other force fields, producing a more versatile sensor than, for example, neutral atoms or quantum dots. By either scanning the ion trap near a surface or moving a sample near the trap, a user could map out the near-surface electric and magnetic fields. The ion is extremely sensitive to electric fields oscillating at between approximately 100 kilohertz and 10 megahertz.

The new trap also might be placed in the focus of a parabolic (cone-shaped) mirror so that light beams could be focused directly on the ion. Under the right conditions, single photons, particles of light, could be transferred between an optical fiber and the single ion with close to 95 percent efficiency. Efficient atom-fiber interfaces are crucial in long-distance quantum key cryptography (QKD), the best method known for protecting the privacy of a communications channel. In quantum computing research, fluorescent light emitted by ions could be collected with similar efficiency as a read-out signal. The new trap also could be used to compare heating rates of different electrode surfaces, a rapid approach to investigating a long-standing problem in the design of ion-trap quantum computers.

Research on the stylus trap was supported by the Intelligence Advanced Research Projects Activity.

* R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, and D.J. Wineland. 2009. Stylus ion trap for enhanced access and sensing. Nature Physics, published online June 28.

####

About National Institute of Standards and Technology
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Laura Ost

(303) 497-4880

Copyright © National Institute of Standards and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Quantum Computing

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Improved interface for a quantum internet January 16th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Toward quantum chips: Packing single-photon detectors on an optical chip is a crucial step toward quantum-computational circuits January 9th, 2015

Sensors

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Tools

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

Military

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE