Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Computer simulations shed light on nanosized minerals

Why nanosized minerals do what they do: This computer simulation reveals the cross section of the water density around a 2.7 nanometer faceted particle. The blue indicates an iron site, pink indicates the area with low water density, and red indicates the area with high water density.
Why nanosized minerals do what they do: This computer simulation reveals the cross section of the water density around a 2.7 nanometer faceted particle. The blue indicates an iron site, pink indicates the area with low water density, and red indicates the area with high water density.

Abstract:
The red and blue images appear ghostly, like a fleeting glimpse of something that's never been seen before — which is true. Using computer simulations, Berkeley Lab scientists have developed the first predicted images of water molecules surrounding a nanoparticle, in this case an iron-oxide mineral called hematite.

Computer simulations shed light on nanosized minerals

Berkeley, CA | Posted on July 6th, 2009

The simulations indicate that the size and shape of the nanosized mineral determines the way in which water molecules layer around it. And this influences how the mineral interacts with its environment, including other nanoparticles, dissolved ions, and the surfaces of larger minerals and bacteria.

The images are a peek into the hidden world of nanosized minerals, which are important components of geochemical cycles in soils, groundwater, rivers and lakes. They're also key players in some of the biggest challenges facing scientists today. Cleaning up contaminants left over from abandoned mines, or learning how to store carbon underground — where it can't contribute to climate change — will require a better understanding of how nanosized minerals participate in these processes.

Addressing these headline-grabbing problems is one of the reasons behind the recently created Berkeley Nanogeoscience Center, located at Berkeley Lab, which seeks to uncover the roles played by nanosized particles in geochemical processes — both manmade and natural. The multidisciplinary group of scientists utilizes cutting edge imaging technologies and computer simulations to learn what makes nanosized minerals tick.

Consider subsurface contaminants. In California, decades of mining activity have yielded large quantities of toxic metal ions that threaten to leach into watersheds. These ions are often adsorbed onto mineral nanoparticles.

"To understand how such contaminants move, we have to understand how nanoparticles move through the subsurface, carrying with them metal ions that are sorbed onto their surface," says Jill Banfield, a principal investigator in the Geochemistry Department of Berkeley Lab's Earth Sciences Division, and a UC Berkeley professor in the Department of Earth and Planetary Sciences and in the Department of Environmental Science, Policy and Management.

There's one problem, however. Nanosized minerals abide by their own, often poorly understood rules. At the nanoscale, which is smaller than 100 nanometers in diameter (one nanometer is one-billionth of a meter), a mineral is more surface than volume. And this can change the way it reacts in unexpected ways.

To explore this world, scientists at the Berkeley Nanogeoscience Center utilize transmission electron microscopy at Berkeley Lab's National Center for Electron Microscopy, which offers extremely high-resolution imaging. Berkeley Lab's Advanced Light Source, a national user facility that generates intense light for scientific research, is used to characterize the chemistry of nanoparticles and image their association with biopolymers and cells.

In their most recent work, the scientists used a dedicated computing cluster that's tailored for nanogeoscience research. Dino Spagnoli, working with a team of scientists from Berkeley Lab's Earth Sciences Division, performed molecular dynamics simulations of different shapes and sizes of a hematite nanoparticle to investigate how water molecules surround it.

"Based on the shape and size of the nanoparticle, and how water surrounds it, we can predict how ions will adsorb to the surface, which is essential to understanding crystal growth," says Spagnoli, who is now with the Curtin University of Technology in Australia.

The simulations predict that water molecules enshroud nanoparticles in ordered layers that change their organization with particle size and shape. With larger faceted nanoparticles, water molecules at the corners are less layered. This makes it easier for an ion to swim to the nanoparticle's surface. In contrast, water molecules become trapped around spherical nanoparticles, decreasing ion mobility.

"It is much easier for compounds to get to the surface of a faceted rather than a spherical particle," adds Banfield. "Overall, we found that water behaves differently based on size and shape of the nanoparticle, and this influences how it reacts with other minerals."

"Prediction of the effects of size and morphology on the structure of water around hematite nanoparticles" by Dino Spagnoli, Benjamin Gilbert, Glenn Waychunas, and Jillian Banfield appears in a recent issue of the journal Geochimica et Cosmochimica Acta. The paper was featured in the Editor's Choice section of the May 22, 2009 issue of Science. This research was funded by the Department of Energy.

####

About Berkeley Lab
In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Eleven scientists associated with Berkeley Lab have won the Nobel Prize and 55 Nobel Laureates either trained here or had significant collaborations with our Laboratory. Thirteen of our scientists have won the National Medal of Science, our nation's highest award for lifetime achievement in fields of scientific research. As of 2008, there have been 61 Berkeley Lab scientists elected into the National Academy of Sciences (NAS), considered one of the highest honors for a scientist in the United States. This translates to approximately three-percent of the total NAS membership, an unparalleled record of achievement. Eighteen of our engineers have been elected to the National Academy of Engineering, and two of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Berkeley Nanogeoscience Center

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Discoveries

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Materials/Metamaterials

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project