Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Lab on a chip' to give growers real-time glimpse into water stress in plants

Ted Boscia/College of Agriculture and Life Sciences
From left, Vinay Pagay, Abraham Stroock and Alan Lakso examine a silicon wafer that will be used to build microsensors to monitor water stress in grapevines.
Ted Boscia/College of Agriculture and Life Sciences
From left, Vinay Pagay, Abraham Stroock and Alan Lakso examine a silicon wafer that will be used to build microsensors to monitor water stress in grapevines.

Abstract:
Fifteen years ago, when Alan Lakso first sought to enlist Cornell's nanofabrication laboratory to develop a tiny sensor that would measure water stress in grapevines, the horticultural sciences professor ended up back at the drawing board.

'Lab on a chip' to give growers real-time glimpse into water stress in plants

Ithaca, NY | Posted on July 6th, 2009

It wasn't until Abraham Stroock, associate professor of chemical engineering, had a breakthrough of his own that Lakso's vision began to take shape. Stroock's lab recently developed a synthetic tree that mimics the flow of water inside plants using a slab of hydrogel with nanometer-scale pores. At last Lakso had access to the technology to move forward.

The device is an embedded microsensor capable of measuring real-time water stress in living plants. In theory, the sensor will help vintners strike the precise balance between drought and overwatering -- both of which diminish the quality of wine grapes.

"To manage for optimum stress," said Lakso, a researcher at the New York State Agricultural Experiment Station in Geneva, "we need to monitor ... exactly what's going on in the vine."

With Vinay Pagay, a graduate student with degrees in computer engineering and viticulture, the team is working at the Cornell Nanofabrication Facility in Ithaca to develop 4-inch diameter silicon wafer protoypes, each containing approximately 100 microsensors. They have also begun collaborating with Infotonics, a firm in Canandaigua, N.Y., that specializes in microelectromechanical systems (MEMS), to plan commercialization of the sensors. The partnership applies cutting-edge engineering to practical agricultural concerns.

The team hopes to design a sensor that will transmit field readings wirelessly to a central server; the data will then be summarized online for the grower. The concept has already received attention from E. & J. Gallo Winery in California as well as researchers and industry leaders from Australia, Spain and Italy. "It's not just for the big growers," Lakso said. "We hope the micro-manufacturing will provide low-cost sensors for small growers as well."

Looking ahead, the team is pursuing alternative sensors that could enhance research in fields from food science to forestry. They have begun development of a "multi-use sensor" that redirects water flow inside the plant through a shunt. In this case, the sensor could measure the flow of water and mineral nutrients through the plant, in addition to water stress. Pagay described it as "a lab on a chip."

Beyond winemaking, the technology has implications for manufacturing, food processing and electronics. Team member Taryn Bauerle, assistant professor of horticulture, described how such sensors could be implanted throughout trees in a forest ecosystem to measure water use and nutrient flow on a large scale with unprecedented accuracy. "All of these [researchers'] brains are coming together," she said. "There's no limit to where we can take this type of technology."

Chris Bentley '10 is a student intern with CALS Communications.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Chip Technology

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

GLOBALFOUNDRIES Offers New Low-Power 28nm Solution for High-Performance Mobile and IoT Applications: Technology is the first in the industry to provide design enablement support optimized to meet low power requirements of RF SoCs May 20th, 2015

Sensors

Record high sensitive Graphene Hall sensors May 21st, 2015

Graphene enables tunable microwave antenna May 15th, 2015

Janusz Bryzek Joins MEMS Industry Group to Lead New TSensors Division - New Division will Focus on Accelerating Development of Emerging Ultra-high Volume Sensors Supporting Abundance, mHealth and IoT May 14th, 2015

Nano-policing pollution May 13th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Food/Agriculture/Supplements

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

QuantumSphere Announces Production-Scale Validation of Nano Iron Catalysts for Multi-Billion Dollar Ammonia Industry: Significant Improvement in Ammonia Production for Agricultural Fertilizer, Global Food Crops May 7th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Research seeks alternatives for reducing bacteria in fresh produce using nanoengineering April 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project