Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > So Long Aspirin, Hello Silver

May 30th, 2009

So Long Aspirin, Hello Silver

Abstract:
Millions of people around the world are prone to dangerous blood clots. Now researchers have had early success with a new way to prevent them--and the strokes, heart attacks, and pulmonary embolisms they cause. Nano-sized particles of silver can stop sticky blood cells called platelets from clinging together in laboratory strains of mice, the team reports.

Platelets help the body stop bleeding. But if they clump together too much, they can also form clots within the bloodstream. A deep-vein thrombosis, for example, can form in the lower leg and block blood flow. If the clot is not broken up quickly using injections of powerful anticoagulants, it can break loose and cut blood supply to the heart or brain, with fatal consequences. As a result, the nearly 500 million sufferers worldwide of clotting-related disorders--including this reporter--must take daily doses of anticoagulants, which carry dangers of their own, such as spontaneous and uncontrollable internal bleeding.

The key, then, is to find an agent that prevents platelets from sticking together too much without impeding their ability to shunt a bleed. Recent research on silver nanoparticles--tiny grains of the metal less than 1/50,000th the width of a human hair--indicated that they might do the trick. So a biomedical team from Banaras Hindu University in Varanasi, India, began exploring their potential, in cooperation with materials science colleagues at the university and at the International Advanced Research Centre for Powder Metallurgy and New Materials in Balapur, India.

Source:
sciencemag.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Announcements

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project