Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Now, a quicker, cheaper SARS virus detector

May 30th, 2009

Now, a quicker, cheaper SARS virus detector

Abstract:
Scientists at the University of Southern California have developed a quicker and cheaper breed of electronic detectors for viruses like SARS and other biological materials, which may prove very helpful in the battle against epidemics.

Project leaders Zhongwu Chou and Mark Thompson point out that the basic nanotube and nanowire biosensors consist of a piece of synthetic antibody attached to a nanowire that's attached to an electrical base, immersed in liquid.

If the protein to which the antibody binds is present in the liquid, it will bind to these antibodies, immediately creating a sharply measurable jump in current through the nanowire.

However, according to the researchers, their new design uses two new elements.

Firstly, it takes advantage of bioengineered synthetic antibodies-which are much smaller versions of the natural substances that are designed to bind with a specific protein and only that protein.

And secondly, it uses indium oxide (In2O3) nanowires instead of silicon and other materials previously tried.

The study has shown that unlike silicon, the metal oxides do not develop "an insulating native oxide layer that can reduce sensitivity."

Thus, the resulting device can detect its target molecules with a sensitivity as great as the best alternative modes, do so more rapidly and without use of chemical reagents.

Source:
littleabout.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Announcements

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE