Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Engineers Discover Fundamental Flaw in Transistor Noise Theory

Pacemakers, like the implanted one shown in this image, are among the low-power devices that could be affected by new NIST findings about transistor noise. The findings indicate unforeseen problems could crop up as transistors grow smaller and run on less power, potentially impacting cell phones and laptops as well.

Credit: Shutterstock; copyright Dario Sabljak
Pacemakers, like the implanted one shown in this image, are among the low-power devices that could be affected by new NIST findings about transistor noise. The findings indicate unforeseen problems could crop up as transistors grow smaller and run on less power, potentially impacting cell phones and laptops as well. Credit: Shutterstock; copyright Dario Sabljak

Abstract:
Chip manufacturers beware: There's a newfound flaw in our understanding of transistor noise, a phenomenon affecting the electronic on-off switch that makes computer circuits possible. According to the engineers at the National Institute of Standards and Technology (NIST) who discovered the problem, it will soon stand in the way of creating more efficient, lower-powered devices like cell phones and pacemakers unless we solve it.

NIST Engineers Discover Fundamental Flaw in Transistor Noise Theory

Posted on May 28th, 2009

While exploring transistor behavior, the team found evidence that a widely accepted model explaining errors caused by electronic "noise" in the switches does not fit the facts. A transistor must be made from highly purified materials to function; defects in these materials, like rocks in a stream, can divert the flow of electricity and cause the device to malfunction. This, in turn, makes it appear to fluctuate erratically between "on" and "off" states. For decades, the engineering community has largely accepted a theoretical model that identifies these defects and helps guide designers' efforts to mitigate them.

Those days are ending, says NIST's Jason Campbell, who has studied the fluctuations between on-off states in progressively smaller transistors. The theory, known as the elastic tunneling model, predicts that as transistors shrink, the fluctuations should correspondingly increase in frequency.

However, Campbell's group at NIST has shown that even in nanometer-sized transistors, the fluctuation frequency remains the same. "This implies that the theory explaining the effect must be wrong," Campbell said. "The model was a good working theory when transistors were large, but our observations clearly indicate that it's incorrect at the smaller nanoscale regimes where industry is headed."

The findings have particular implications for the low-power transistors currently in demand in the latest high-tech consumer technology, such as laptop computers. Low-power transistors are coveted because using them on chips would allow devices to run longer on less power—think cell phones that can run for a week on a single charge or pacemakers that operate for a decade without changing the battery. But Campbell says that the fluctuations his group observed grow even more pronounced as the power decreased. "This is a real bottleneck in our development of transistors for low-power applications," he says. "We have to understand the problem before we can fix it—and troublingly, we don't know what's actually happening."

Campbell, who credits NIST colleague K.P. Cheung for first noticing the possibility of trouble with the theory, presented* some of the group's findings at an industry conference on May 19, 2009, in Austin, Texas. Researchers from the University of Maryland College Park and Rutgers University also contributed to the study.

* J.P. Campbell, L.C. Yu, K.P. Cheung, J. Qin, J.S. Suehle, A. Oates, K. Sheng. Large Random Telegraph Noise in Sub-Threshold Operation of Nano-scale nMOSFETs. 2009 IEEE International Conference on Integrated Circuit Design and Technology. Austin, Texas. May 19, 2009; and Random Telegraph Noise in Highly Scaled nMOSFETs. 2009 IEEE International Reliability Physics Symposium, Montreal, Canada, April 29, 2009.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact:
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Chip Technology

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic