Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST Engineers Discover Fundamental Flaw in Transistor Noise Theory

Pacemakers, like the implanted one shown in this image, are among the low-power devices that could be affected by new NIST findings about transistor noise. The findings indicate unforeseen problems could crop up as transistors grow smaller and run on less power, potentially impacting cell phones and laptops as well.

Credit: Shutterstock; copyright Dario Sabljak
Pacemakers, like the implanted one shown in this image, are among the low-power devices that could be affected by new NIST findings about transistor noise. The findings indicate unforeseen problems could crop up as transistors grow smaller and run on less power, potentially impacting cell phones and laptops as well. Credit: Shutterstock; copyright Dario Sabljak

Abstract:
Chip manufacturers beware: There's a newfound flaw in our understanding of transistor noise, a phenomenon affecting the electronic on-off switch that makes computer circuits possible. According to the engineers at the National Institute of Standards and Technology (NIST) who discovered the problem, it will soon stand in the way of creating more efficient, lower-powered devices like cell phones and pacemakers unless we solve it.

NIST Engineers Discover Fundamental Flaw in Transistor Noise Theory

Posted on May 28th, 2009

While exploring transistor behavior, the team found evidence that a widely accepted model explaining errors caused by electronic "noise" in the switches does not fit the facts. A transistor must be made from highly purified materials to function; defects in these materials, like rocks in a stream, can divert the flow of electricity and cause the device to malfunction. This, in turn, makes it appear to fluctuate erratically between "on" and "off" states. For decades, the engineering community has largely accepted a theoretical model that identifies these defects and helps guide designers' efforts to mitigate them.

Those days are ending, says NIST's Jason Campbell, who has studied the fluctuations between on-off states in progressively smaller transistors. The theory, known as the elastic tunneling model, predicts that as transistors shrink, the fluctuations should correspondingly increase in frequency.

However, Campbell's group at NIST has shown that even in nanometer-sized transistors, the fluctuation frequency remains the same. "This implies that the theory explaining the effect must be wrong," Campbell said. "The model was a good working theory when transistors were large, but our observations clearly indicate that it's incorrect at the smaller nanoscale regimes where industry is headed."

The findings have particular implications for the low-power transistors currently in demand in the latest high-tech consumer technology, such as laptop computers. Low-power transistors are coveted because using them on chips would allow devices to run longer on less power—think cell phones that can run for a week on a single charge or pacemakers that operate for a decade without changing the battery. But Campbell says that the fluctuations his group observed grow even more pronounced as the power decreased. "This is a real bottleneck in our development of transistors for low-power applications," he says. "We have to understand the problem before we can fix it—and troublingly, we don't know what's actually happening."

Campbell, who credits NIST colleague K.P. Cheung for first noticing the possibility of trouble with the theory, presented* some of the group's findings at an industry conference on May 19, 2009, in Austin, Texas. Researchers from the University of Maryland College Park and Rutgers University also contributed to the study.

* J.P. Campbell, L.C. Yu, K.P. Cheung, J. Qin, J.S. Suehle, A. Oates, K. Sheng. Large Random Telegraph Noise in Sub-Threshold Operation of Nano-scale nMOSFETs. 2009 IEEE International Conference on Integrated Circuit Design and Technology. Austin, Texas. May 19, 2009; and Random Telegraph Noise in Highly Scaled nMOSFETs. 2009 IEEE International Reliability Physics Symposium, Montreal, Canada, April 29, 2009.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact:
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE