Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Bruker and Carl Zeiss Announce Collaboration to Advance Molecular Histology

Abstract:
Integration of MIRAX Virtual Slide Scanner from Carl Zeiss into Bruker's MALDI Molecular ImagerTM Enables Non-Targeted Molecular Histology -- Combined Solution to be Introduced at German Pathology Society (DGP) Meeting in June 2009

Bruker and Carl Zeiss Announce Collaboration to Advance Molecular Histology

BREMEN, Germany & JENA, Germany | Posted on May 28th, 2009

Bruker Daltonik GmbH and Carl Zeiss MicroImaging GmbH today announced the integration of the MIRAX Virtual Slide Scanner from Carl Zeiss into Bruker's MALDI Molecular ImagerTM. The goal of the Bruker-Carl Zeiss collaboration is to advance molecular histology research by providing an integrated solution (for research use only) for biological tissue research and pathology that adds non-targeted molecular information and 'molecular contrast' to histology.

The MALDI Molecular Imager is a molecular imaging system based on matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry directly from tissue sections. It allows histology researchers to measure spatially resolved peptide, protein and lipid profiles in tissue sections. MALDI imaging is a non-targeted, broadly applicable molecular imaging approach without the need for any antibody or nucleotide probe. Tissue-type specific molecular signatures (e.g. from tumors) can be generated and used for biomarker discovery and molecular histology.

A major bottleneck in the interpretation of MALDI imaging data in pathology research has been the interpretation of results in a histological context. Until now, this has required repeated switching between evaluated MALDI molecular images and microscope views. The integration of Carl Zeiss' MIRAX Slide Scanner results into the MALDI Molecular Imager solution allows the direct overlay of the full microscopic image with the full molecular and spectral information in one convenient visualization software tool, enabling true untargeted molecular histology.

Dr. Sören-Oliver Deininger, MALDI Imaging Product Specialist at Bruker Daltonics, explained: "Bruker has been the market and commercial technology leader in MALDI imaging for several years. Proprietary technologies such as the smartbeamTM laser for best spectra quality at highest speed and best spatial resolution, as well as the Bruker ImagePrepTM for easy and reproducible sample preparation, have turned MALDI imaging into a mainstream research application. Now, the full integration of the MIRAX virtual slides allows tissue and pathology researchers for the first time to evaluate their results directly in the histological context with the full spatial resolution of optical microscopy and the molecular information from MALDI imaging.

"This integrated molecular histology solution will significantly accelerate clinical pathology research, particularly in oncology, where the untargeted molecular information is expected to reveal additional subtle changes in tissue that cannot be distinguished by traditional histology methods today."

"The integration of the MIRAX Virtual Slide Scanner into the MALDI Molecular Imager solution is a very good example of how the combination of two innovative technologies can create new benefits for biomedical research. With two technology leaders working together, we believe that we have a strong foundation for a novel, breakthrough histology solution. We look forward to working closely together with Bruker," said Dr. Richard Ankerhold, business unit manager from Carl Zeiss.

Dr. Axel Walch, a pathologist at the Helmholtz Centre in Munich, and a user of both the MALDI Molecular Imager and the MIRAX slide scanner, commented: "The protein expression observed in MALDI Imaging data cannot be fully understood without the underlying histological information: the correlation of the MALDI image with a micrometer-resolution microscopic image is therefore mandatory for MALDI Imaging in clinical research. The Zeiss Mirax Scanner has the true advantage of online scalable high lateral resolution that can zoom in quickly to any tissue sections investigated by MALDI. Merging both techniques, Bruker MALDI Imaging and MIRAX virtual microscopy, leads to synergistic effects with outstanding benefits for clinical research. It truly completes the superior Bruker product line for imaging comprising of sample preparation, high performance MALDI mass spectrometry and highly sophisticated software for data interpretation."

####

About Bruker Daltonik GmbH
Bruker Daltonics, an operating company of Bruker Corporation (NASDAQ: BRKR), is a leading developer and provider of innovative life science tools based on mass spectrometry. We design, manufacture and market a broad array of products intended to meet the rapidly growing needs of a diverse customer base, including pharmaceutical, biotechnology, proteomics and molecular diagnostics companies, academic institutions and government agencies.

For more information, please click here

Copyright © Bruker Daltonik GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Imaging

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Nanomedicine

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Announcements

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014

Tools

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Nanobiotechnology

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE