Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quick-fix Molecular Machines

Berkeley Lab researchers at the Molecular Foundry have developed a route to rapidly assemble 'cage-like' container molecules that could be used as molecular machines.
Berkeley Lab researchers at the Molecular Foundry have developed a route to rapidly assemble 'cage-like' container molecules that could be used as molecular machines.

Abstract:
Berkeley Lab researchers have developed simple recipes to whip up ‘cage-like' container structures for the creation of complex molecular machines.

Quick-fix Molecular Machines

Berkeley, CA | Posted on May 25th, 2009

A sprinkle of this, a dash of that, sit back and let chemistry do its magic. Smells like a cooking analogy, but Berkeley Lab researchers have used just such a simple recipe to whip up ‘cage-like' container structures to create complex molecular machines that can be programmed to rotate, switch and perform mechanical work.

Previous research has shown efficient synthetic techniques can be used to construct complicated molecular machines that function by moving the individual parts within an overall molecular architecture. An example of this is a rotaxane-a complex molecule made of interlocking components that resemble wheels and axles. The tiniest building blocks in a scientist's toy chest, these nanoscale parts ‘clip' together to form functional molecular machines.

Unlike their macroscale counterparts, however, these interlocked molecules require no tinkering-"you can throw all the pieces together and let it assemble on its own," said Yi Liu, a staff scientist in the Organic and Macromolecular Synthesis Facility in the Molecular Foundry, a U.S. Department of Energy User Facility located at Berkeley Lab that provides support to nanoscience researchers around the world. ‘The challenge is how to engineer a synthetic route to make the assembly happen on demand."

Liu and colleagues have done just this, creating a caged structure made of benzene-like rings that assemble themselves around an axle of bipyridinium (a similar but positively-charged molecule containing nitrogen) to create an interlocked architecture. The cage itself could hold ions or small biological molecules, making it potentially useful for sensing applications.

"Our findings are especially attractive as the entire structure is formed through a ‘one-pot' synthesis from six individual ingredients. Once the driving force, in this case the weak interactions between molecules, is identified, we can tailor the clipping to give us just the interlocked structure in an efficient manner, without undesirable polymer byproducts," Liu said. "What could be simpler?"

The researchers anticipate the caged structure could be used as molecular containers for sensing, or as molecular switches by selectively sliding the cage along the axle, with ‘on' and ‘off' settings at either end. "The easy steps and simple precursors suggest these structures can be readily obtained in large-scale to support their applications," Liu adds.

"Linear p-acceptor templated dynamic clipping to macrobicycles and [2]rotaxanes," by Liana M. Klivansky, Gayane Koshkakaryan, Dennis Cao and Yi Liu, appears in Angewandte Chemie International Edition and is available in Angewandte Chemie online.

The Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy, supported this work, under contract No. DE-AC02-05 CH11231.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Molecular Machines

Structural Insights into the Inner Workings of a Viral Nanomachine April 3rd, 2014

Big data tackles tiny molecular machines:Rice University technique able to analyze conformations of complex molecular machines March 14th, 2014

Advantages emerge in using nanostructured material in the forging process of mechanical components February 28th, 2014

Nanomotors are controlled, for the first time, inside living cells February 10th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Sensors

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE