Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New 3-D structural model of critical H1N1 protein developed: Singapore scientists conduct and complete research in just two weeks

Abstract:
In just two weeks from the time the first patient virus samples were made available, Singapore scientists report an evolutionary analysis of a critical protein produced by the 2009 H1N1 influenza A virus strain.

New 3-D structural model of critical H1N1 protein developed: Singapore scientists conduct and complete research in just two weeks

Singapore | Posted on May 22nd, 2009

In the Biology Direct journal's May 20th issue, Sebastian Maurer-Stroh, Ph.D., and his team of scientists at the Bioinformatics Institute (BII), one of the research institutes at Singapore's Biopolis, also demonstrated the use of a computational 3-dimensional (3D) structural model of the protein, neuraminidase.

"Because we were working as a team, driven by the common goal to understand potential risks from this new virus, our group at BII was able to successfully complete this difficult analysis within such a short time," said Dr. Maurer-Stroh, BII principal investigator and first author of the paper.

BII's interactive 3D model is available at the following link: http://mendel.bii.a-star.edu.sg/SEQUENCES/H1N1/

With the 3D model, Dr. Maurer-Stroh and his team were able to map the regions of the protein that have mutated and determine whether drugs and vaccines that target specific areas of the protein were effective. Among their findings:

a. neuraminidase structure of the 2009 H1N1 influenza A virus has undergone extensive surface mutations compared to closely related strains such as the H5N1 avian flu virus or other H1N1 strains including the 1918 Spanish flu;
b. neuraminidase of the 2009 H1N1 influenza A virus strain is more similar to the H5N1 avian flu than to the historic 1918 H1N1 strain (Spanish flu);
c. current mutations of the virus have rendered previous flu vaccinations directed against neuraminidase less effective; and
d. commercial drugs, namely Tamiflu® and Relenza®, are still effective in treating the current H1N1 virus.

With the Biology Direct journal paper, the Singapore scientists have become the first to demonstrate how bioinformatics and computational biology can contribute towards managing the H1N1 influenza A virus.

"BII's H1N1 virus sequence study marks a significant milestone in the use of computational biology methods in understanding how the mutations of the fast evolving influenza virus affect immunogenic properties or drug response," said BII Director Frank Eisenhaber, Ph.D. "This information helps to develop a strategy for fighting the H1N1 virus and for organising an effective treatment for patients."

Other technologies to tackle the 2009 H1N1 Influenza A virus have been developed by scientists at Biopolis research institutes sponsored by Singapore's A*STAR (Agency for Science, Technology and Research). They include:

* a chip that is able to quickly sequence or decode the genes in the flu virus and distinguish between the H1N1, seasonal, and mutated flu strains, at the Genome Institute of Singapore (GIS).
* a microkit for the detection and identification of the flu virus strain within 2 hours, at the Institute of Bioengineering and Nanotechnology (IBN).
* a molecular diagnostic assay to distinguish between the H1N1 and seasonal flu strains, at the Institute of Molecular and Cell Biology (IMCB).

###

The Singapore scientists' paper, "Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites," was published in Biology Direct journal on 20 May 2009. Authors: Sebastian Maurer-Stroh1, Jianmin Ma1, Raphael Tze Chuen Lee1, Fernanda L Sirota1 and Frank Eisenhaber1,2

1Biomolecular Function Discovery Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 2Department of Biological Sciences, National University of Singapore, Singapore

Influenza A virus strains are categorized according to two proteins found on the surface of the virus: haemagglutinin (H) and neuraminidase (N). All influenza A viruses contain haemagglutinin and neuraminidase. The structures of these proteins differ from strain to strain eg, swine flu belongs to the H1N1 type, avian flu to H5N1 and the currently dominant seasonal flu belongs to the H3N2 type.

####

About Agency for Science, Technology and Research (A*STAR), Singapore
A*STAR is Singapore's lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, Physical Sciences and Engineering, with a particular focus on fields essential to Singapore's manufacturing industry and new growth industries. It oversees 22 research institutes, consortia and centres, and supports extramural research with the universities, hospital research centres and other local and international partners. At the heart of this knowledge intensive work is human capital. Top local and international scientific talent drive knowledge creation at A*STAR research institutes. The agency also sends scholars for undergraduate, graduate and post-doctoral training in the best universities, a reflection of the high priority A*STAR places on nurturing the next generation of scientific talent.

Bioinformatics Institute (BII):

The Bioinformatics Institute (BII) is a member of the Agency for Science and Technology Research (A*STAR). Funded by the Biomedical Research Council (BMRC) of A*STAR, BII was set up in July 2001 as part of the national initiative to foster and advance biomedical research and human capital for a vibrant knowledge-based Singapore. With a multi-disciplinary focus and collaborative outlook, BII recognises the need for depth and breadth in all its activities for building a thriving world-class biomedical research, graduate training and development hub in Singapore. In addition, BII is proactively involved in building a national resource centre in bioinformatics to meet the evolving needs of the scientific community in Singapore.

For more information about BII, please visit www.bii.a-star.edu.sg

For more information, please click here

Contacts:
Cathy Yarbrough

858-243-1814

Yunshi Wang (Ms)
Corporate Communications
Agency for Science, Technology and Research (A*STAR)
Tel: (65) 6826 6443
Email:

Copyright © Agency for Science, Technology and Research (A*STAR), Singap

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Nanomedicine

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

PetLife Comments on CNN Story on Scorpion Venom Health Benefits August 27th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Discoveries

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Announcements

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE