Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New 3-D structural model of critical H1N1 protein developed: Singapore scientists conduct and complete research in just two weeks

Abstract:
In just two weeks from the time the first patient virus samples were made available, Singapore scientists report an evolutionary analysis of a critical protein produced by the 2009 H1N1 influenza A virus strain.

New 3-D structural model of critical H1N1 protein developed: Singapore scientists conduct and complete research in just two weeks

Singapore | Posted on May 22nd, 2009

In the Biology Direct journal's May 20th issue, Sebastian Maurer-Stroh, Ph.D., and his team of scientists at the Bioinformatics Institute (BII), one of the research institutes at Singapore's Biopolis, also demonstrated the use of a computational 3-dimensional (3D) structural model of the protein, neuraminidase.

"Because we were working as a team, driven by the common goal to understand potential risks from this new virus, our group at BII was able to successfully complete this difficult analysis within such a short time," said Dr. Maurer-Stroh, BII principal investigator and first author of the paper.

BII's interactive 3D model is available at the following link: http://mendel.bii.a-star.edu.sg/SEQUENCES/H1N1/

With the 3D model, Dr. Maurer-Stroh and his team were able to map the regions of the protein that have mutated and determine whether drugs and vaccines that target specific areas of the protein were effective. Among their findings:

a. neuraminidase structure of the 2009 H1N1 influenza A virus has undergone extensive surface mutations compared to closely related strains such as the H5N1 avian flu virus or other H1N1 strains including the 1918 Spanish flu;
b. neuraminidase of the 2009 H1N1 influenza A virus strain is more similar to the H5N1 avian flu than to the historic 1918 H1N1 strain (Spanish flu);
c. current mutations of the virus have rendered previous flu vaccinations directed against neuraminidase less effective; and
d. commercial drugs, namely Tamiflu® and Relenza®, are still effective in treating the current H1N1 virus.

With the Biology Direct journal paper, the Singapore scientists have become the first to demonstrate how bioinformatics and computational biology can contribute towards managing the H1N1 influenza A virus.

"BII's H1N1 virus sequence study marks a significant milestone in the use of computational biology methods in understanding how the mutations of the fast evolving influenza virus affect immunogenic properties or drug response," said BII Director Frank Eisenhaber, Ph.D. "This information helps to develop a strategy for fighting the H1N1 virus and for organising an effective treatment for patients."

Other technologies to tackle the 2009 H1N1 Influenza A virus have been developed by scientists at Biopolis research institutes sponsored by Singapore's A*STAR (Agency for Science, Technology and Research). They include:

* a chip that is able to quickly sequence or decode the genes in the flu virus and distinguish between the H1N1, seasonal, and mutated flu strains, at the Genome Institute of Singapore (GIS).
* a microkit for the detection and identification of the flu virus strain within 2 hours, at the Institute of Bioengineering and Nanotechnology (IBN).
* a molecular diagnostic assay to distinguish between the H1N1 and seasonal flu strains, at the Institute of Molecular and Cell Biology (IMCB).

###

The Singapore scientists' paper, "Mapping the sequence mutations of the 2009 H1N1 influenza A virus neuraminidase relative to drug and antibody binding sites," was published in Biology Direct journal on 20 May 2009. Authors: Sebastian Maurer-Stroh1, Jianmin Ma1, Raphael Tze Chuen Lee1, Fernanda L Sirota1 and Frank Eisenhaber1,2

1Biomolecular Function Discovery Division, Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 2Department of Biological Sciences, National University of Singapore, Singapore

Influenza A virus strains are categorized according to two proteins found on the surface of the virus: haemagglutinin (H) and neuraminidase (N). All influenza A viruses contain haemagglutinin and neuraminidase. The structures of these proteins differ from strain to strain eg, swine flu belongs to the H1N1 type, avian flu to H5N1 and the currently dominant seasonal flu belongs to the H3N2 type.

####

About Agency for Science, Technology and Research (A*STAR), Singapore
A*STAR is Singapore's lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based Singapore. A*STAR actively nurtures public sector research and development in Biomedical Sciences, Physical Sciences and Engineering, with a particular focus on fields essential to Singapore's manufacturing industry and new growth industries. It oversees 22 research institutes, consortia and centres, and supports extramural research with the universities, hospital research centres and other local and international partners. At the heart of this knowledge intensive work is human capital. Top local and international scientific talent drive knowledge creation at A*STAR research institutes. The agency also sends scholars for undergraduate, graduate and post-doctoral training in the best universities, a reflection of the high priority A*STAR places on nurturing the next generation of scientific talent.

Bioinformatics Institute (BII):

The Bioinformatics Institute (BII) is a member of the Agency for Science and Technology Research (A*STAR). Funded by the Biomedical Research Council (BMRC) of A*STAR, BII was set up in July 2001 as part of the national initiative to foster and advance biomedical research and human capital for a vibrant knowledge-based Singapore. With a multi-disciplinary focus and collaborative outlook, BII recognises the need for depth and breadth in all its activities for building a thriving world-class biomedical research, graduate training and development hub in Singapore. In addition, BII is proactively involved in building a national resource centre in bioinformatics to meet the evolving needs of the scientific community in Singapore.

For more information about BII, please visit www.bii.a-star.edu.sg

For more information, please click here

Contacts:
Cathy Yarbrough

858-243-1814

Yunshi Wang (Ms)
Corporate Communications
Agency for Science, Technology and Research (A*STAR)
Tel: (65) 6826 6443
Email:

Copyright © Agency for Science, Technology and Research (A*STAR), Singap

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Announces Availability of mmWave and RF/Analog on Leading FDX™ FD-SOI Technology Platform: Technology solution delivers ‘connected intelligence’ to next generation high-volume wireless and IoT applications with lower power and significantly reduced cost September 20th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Announcements

GLOBALFOUNDRIES Delivers 8SW RF SOI Technology for Next-Generation Mobile and 5G Applications: Advanced 8SW 300mm SOI technology enables cost-effective, high-performance RF front-end modules for 4G LTE mobile and sub-6GHz 5G applications September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project