Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Collaboration Focuses on Fracture Putty for Bone Injuries

Abstract:
Northwestern University is part of a multi-institution initiative to produce "fracture putty," a biocompatible compound designed to mend serious leg fractures, such as those suffered by soldiers.

The two-year research project is funded by the Defense Advanced Research Projects Agency (DARPA), an agency of the U.S. Department of Defense.

Collaboration Focuses on Fracture Putty for Bone Injuries

Evanston, IL | Posted on May 22nd, 2009

The research team's goal is to develop a putty-like material that could be used to regenerate bones shattered by roadside bombs or other explosive devices. This type of injury, called a non-union fracture, generally will not heal in a timely manner and can lead to amputation.

Samuel Stupp, director of the Institute for BioNanotechnology in Medicine at Northwestern (IBNAM), is leading the University's portion of the research. He and Ramille Capito, a research assistant professor in Stupp's lab, will use bioactive peptide amphiphile (PA) molecules developed at IBNAM as the major bioactive component of this fracture putty to make bone regenerate.

"New technology is needed to treat in the field the devastating tissue injuries sustained by soldiers that often lead to amputation," said Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry and Medicine. "The extremely demanding requirements of such technology could revolutionize many aspects of regenerative medicine in the civilian population."

Biomedical engineers at The University of Texas Health Science Center at Houston (UTHSC-H) are leading the overall effort, which also includes Harvard University. The total value of the UTHSC-H effort, if all phases of the development program are completed, could be up to $7.9 million with subcontract to Northwestern up to $1.2 million.

Serious injuries typically are repaired with bone grafts. Pins, plates or screws hold the grafts to healthy bone and external fixators provide support. Soldiers may require multiple surgeries and long recuperation periods, and they may not recoup full use of the injured leg.

If fracture putty proves successful, injured soldiers could fundamentally regain full use of their legs in a much shorter period of time. It could also be used in emergency rooms to treat civilians injured in traffic accidents and other traumatic events.

Northwestern investigators at IBNAM are developing the new materials based on nanotechnology to make bone regenerate quickly; the Houston group will focus on mechanical properties; and the Harvard team, led by George Whitesides, will focus on adhesion of the putty to bone.

The entire research team is being led by principal investigator Mauro Ferrari, director of the division of nanomedicine and deputy chairman of the department of biomedical engineering, a joint venture among the UT Health Science Center at Houston, The University of Texas at Austin and The University of Texas M. D. Anderson Cancer Center.

The Ferrari team will begin the pre-clinical study by testing the mechanical and biological properties of candidate compounds in mathematical models and in vitro systems. Afterward, the compounds designed in Stupp's laboratory will be tested in several animal models. If the fracture putty works in an animal model, the next step would involve patients.

"The fracture putty will serve as a bioactive scaffold and will be able to substitute for the damaged bone," said Ferrari. "At the same time, the putty will facilitate the formation of natural bone and self-healing in the surrounding soft tissue through the attraction of the patient's own stem cells. The putty will have the texture of modeling clay so that it can be molded in any shape in order to be used in many different surgical applications, including the reconnection of separated bones and the replacement of missing bones."

The research project, "BioNanoScaffolds for Post-Traumatic OsteoRegeneration," runs through December 2010. The site leaders at the other collaborating institutions are Antonios Mikos, Rice University; Bradley Weiner, The Methodist Hospital; Philip Nobel, Baylor College of Medicine; and Raffaella Righetti and Theresa Fossum, Texas A & M University.

DARPA sponsors revolutionary high-risk, high-payoff research that bridges the gap between fundamental discoveries and their military use.

"This undertaking represents the ultimate convergence of materials science, mechanics and orthopedics," said DARPA Program Manager Mitchell Zakin. "I look forward to the first results, which should present themselves in about a year or so."

####

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Research partnerships

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE