Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Powercast and CAP-XX Team on Battery-Free Power Supply for Wireless Sensors: Powercast RF energy harvester & supercapacitor reference design presented at nanoPower Forum

Powercast RF Energy Harvesting Module
This wireless power module combines Powercast's RF energy-harvesting technology with a CAP-XX supercapacitor to create a perpetual, battery-free power source for the wireless sensors commonly used in security, environmental and condition-monitoring systems. The module integrates a power receiving antenna, a Powercast Powerharvester to convert the radio waves into low DC power and a CAP-XX supercapacitor. The supercapacitor stores the harvested energy and provides peak transmission power to a wireless sensor/transmitter board such as the Texas Instruments eZ430-RF2500T. The complete module measures 8" tall x 1" wide x ¼” thick.
Powercast RF Energy Harvesting Module This wireless power module combines Powercast's RF energy-harvesting technology with a CAP-XX supercapacitor to create a perpetual, battery-free power source for the wireless sensors commonly used in security, environmental and condition-monitoring systems. The module integrates a power receiving antenna, a Powercast Powerharvester to convert the radio waves into low DC power and a CAP-XX supercapacitor. The supercapacitor stores the harvested energy and provides peak transmission power to a wireless sensor/transmitter board such as the Texas Instruments eZ430-RF2500T. The complete module measures 8" tall x 1" wide x ¼” thick.

Abstract:
Darnell nanoPower Forum - Today, engineers from Powercast and CAP-XX Limited (LSE:CPX) will introduce a wireless power module reference design combining Powercast's RF energy-harvesting technology with a CAP-XX supercapacitor to create a perpetual, battery-free power source for wireless sensors commonly used in environmental monitoring, building automation, industrial controls and other condition monitoring systems.

Powercast and CAP-XX Team on Battery-Free Power Supply for Wireless Sensors: Powercast RF energy harvester & supercapacitor reference design presented at nanoPower Forum

San Jose, CA | Posted on May 21st, 2009

Low-power energy harvesting can supply the average power required by many sensor-based systems, but cannot provide the peak power needed to collect and transmit data over wireless networks such as IEEE 802.15.4 (Zigbee), 802.11 (WLAN) or GSM/GPRS. This is the industry's first reference design using commercial components that harvests RF energy from low-power radio waves, stores it in a supercapacitor, and then delivers high power bursts when charged.

The wireless power module reference design integrates a power receiving antenna, a Powercast Powerharvester™ receiver, and a CAP-XX supercapacitor for energy storage and peak transmission power. Low-power wireless sensors or RF modules can be added with simple "two-wire" integration. The module measures approximately eight inches tall, one inch wide and ¼ inch thick at the body
(http://www.cap-xx.com/news/photogallery.htm#BritePower).

In operation, the design creates a perpetual power supply for fixed or mobile wireless sensor nodes, such as those located throughout a building, eliminating the need for batteries or wired power. Powercast's Powercaster™ transmitter, which powers this reference design, sends radio waves to the Powerharvester integrated into the module. The Powerharvester converts energy received from these radio waves into DC power, trickle-charges the supercapacitor, and then delivers power from the supercapacitor to the wireless sensor. This cycle repeats as the module receives additional radio waves, which can be sent continuously, on-demand or on a scheduled basis. This design uses the 915 MHz band, but can be adapted for other frequencies, or set to harvest environmental radio waves from TV, radio or mobile phone networks.

The Powercaster transmitter provides controllable, 24 x 7 wireless power, allowing wireless sensors to avoid using potentially unreliable ambient types of energy harvesting such as solar or heat.

CAP-XX vice president of applications engineering, Pierre Mars, and Powercast head of technology platforms, Charlie Greene, will present their collaborative paper, "Harvesting RF Energy and Powering a Wireless Sensor Node Using a Supercapacitor," in the energy harvesting session on Monday, May 18 at the Darnell nanoPower Forum in San Jose, California.

"This 'fit and forget' self-generating power source guarantees that sensors deployed throughout a building or local area will receive power without batteries or potentially unreliable environmentally-harvested energy such as solar or heat," said Mars.

"Wireless sensor networks are increasingly popular, but today are predominantly powered by disposable batteries," explained Harry Ostaffe, director of marketing for Powercast. "The RF energy harvester and supercapacitor combination eliminates the cost and hassle of replacing and disposing of batteries, and enables wireless sensor networks to scale to thousands of nodes with minimal maintenance."

####

About CAP-XX Limited
Sydney, Australia-based CAP-XX is a world leader in thin, flat supercapacitors for space-constrained electronic devices. Supercapacitors resolve the performance limitations of batteries and other current-limited power supplies and provide backup power if the primary power source fails.

CAP-XX supercapacitors enable manufacturers to make smaller, thinner, longer-running and more feature-rich devices such as camera phones, solid state drives, handheld PCs and battery-free condition monitoring systems using the company's BritePower™ architectures. The company is listed on the Alternative Investment Market (AIM) in London.

About Powercast: (www.powercastco.com )
Powercast Corporation is a leading innovator of wireless power technology. Founded in 2003, Powercast's proprietary core technology and related intellectual property pioneered the model for completely untethered electronic devices by transmitting and harvesting common radio waves similar to those in wireless communications. Emerging applications include wireless sensors, advanced displays, novelty lighting and other low-power electronic devices. Contributing to a greener world, Powercast's technologies eliminate or reduce the need for batteries, extend sensor networks into hard-to-service locations and enable greater energy efficiency for HVAC, lighting and other systems.

For more information, please click here

Contacts:
CAP-XX
Michelle Moody
+1 214 363 3460


Powercast:
Harry Ostaffe
+1 412 923 4774

Copyright © CAP-XX Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Alliances/Partnerships/Distributorships

Nature inspires a greener way to make colorful plastics July 30th, 2014

SouthWest NanoTechnologies Names NanoSperse as A SWeNT Certified Compounder July 29th, 2014

ACS Biomaterials Science & Engineering™: Brand-new journal names editor July 29th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE