Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Team Tracks Nanotube Cancer Killers in Live Tissue

Abstract:
Collaboration between scientists at medical school and nearby metropolitan campus in Arkansas detected, tracked and killed cancer cells in real time in living system with carbon nanotubes.

Team Tracks Nanotube Cancer Killers in Live Tissue

Little Rock, AR | Posted on May 20th, 2009

Nanotechnology scientists at two Arkansas research institutions have developed a method of detecting, tracking, and killing cancer cells in real time with carbon nanotubes.

The discovery opens the prospect of a new, major front in the fight to eradicate cancer with promise for a new generation of cancer treatment beyond surgery, radiation, and chemotherapy.

Dr. Alex Biris, University of Arkansas at Little Rock (UALR) chief scientist at the Nanotechnology Center and assistant professor of applied science in University's Donaghey College of Engineering and Information Technology, and Dr. Vladimir P. Zharov, professor and director of the Phillips Classic Laser and Nanomedicine Laboratories in the University of Arkansas for Medical Sciences (UAMS) Winthrop P. Rockefeller Cancer Institute, published their findings in the latest issue of the Journal of Biomedical Optics.

"Until now, nobody has been able to fully understand and study in vivo and in real time how these nanoparticles travel through a living system," Biris said. "By using Raman spectroscopy, we showed that it is possible not only to monitor and detect nanomaterials moving through the circulation, but also to detect single cancer cells tagged with carbon nanotubes. In this way, we can measure their clearance rate and their biodistribution kinetics through the lymph and blood systems."

Zharov emphasized that in vivo Raman flow cytometry is promising for the detection and identification of a broad spectrum of various nanoparticles with strong Raman scattering properties, such as cells, bacteria, and even viruses.

"Before any clinical application of nanoparticles, it is imperative to determine their pharmacological profiles," Zharov said. "And this tool will provide this function as a supplement or even an alternative to the existing methods."

In their research, Biris, Zharov, and UAMS colleague Ekaterina Galanzha, M.D., injected a single human cancer cell containing carbon nanotube material in the tail vein of a test rat. They were able to follow the circulation of the carbon nanotubes in the blood vessels to the rat's ear, tracking the cell through the rat's blood stream, lymphatic system, and tissue with a Raman spectrometer.

In the same issue of the scientific journal, Biris and Zharov published a second paper discussing how nanoparticles can tag cancer cells. A laser then heats the nanoparticles, killing the cancer cell.

"If we are able to target cancer cells using these nanomaterials, we can monitor where the cancer cells are specifically located, and then we can kill them," Biris said.

He said the live rat experiment shows how the cancer killing process leaves only a dead cell and nanoparticles that, within a matter of hours, disintegrate and die.

Dr. Mary Good, dean of UALR's Donaghey College of Engineering and Information Technology, said the medical and economic ramifications of the discovery are significant.

"The research Dr. Biris and Dr. Zharov have conducted indeed is significant and promising," said Good, former technology undersecretary of Commerce in the Clinton administration. "It points to a whole new direction for medical applications for nanoparticles. There still is extensive time needed for research into the ultimate utility for these approaches and for human subject experiments. But this early work is exciting and provides long-term hope for more effective cancer treatments."

Biris, 34, said the UALR Nanotechnology Center's aim is to accelerate the development of commercial applications of nanotechnology and its potential to revolutionize medical advancements and the next generation of manufacturing of other products.

"The close location of UALR with its cutting-edge analytical chemistry and nanotechnological tools, along with UAMS and its established biological and medical infrastructures, provides unique opportunities for comprehensive pre-clinical evaluation of nanotechnological products," Zharov said. "That allows for us to accelerate Nanotechnology advances from bench to bedside, providing breakthroughs in early diagnosis, prevention and effective treatment of cancers, stroke, heart attack, infections, and neurological disorders which remain the leading cause of death in the U.S."

About the scientists
Zharov obtained his Ph.D and DSc degrees at Moscow State Technical University and completed a postdoctoral fellowship at Lawrence National Laboratory of the University of California. He served as professor and chairman of the Biomedical Engineering Department at Moscow University. Since 2000, he is a professor and director of the Phillips Classic Laser and Nanomedicine Laboratories at the UAMS Winthrop P. Rockefeller Cancer Institute. Zharov has authored and co-authored five books, 40 patents, and published close to 200 papers. He is the principle investigator in 12 grants from the NIH, NSF, and DoD. He has unique interdisciplinary skills in physics, biology and medicine.

Zharov's research interests include the development and medical application of advanced laser, nanotechnology and imaging and he was the first recipient of the United States Maiman Award, named after the inventor of the first laser. His laboratories have pioneered laser-ultrasound microsurgery, phototherapy of post-mastectomy lymphedema, photoacoustic tweezers, multiplex imaging of cancer cells, laser-gene therapy, laser-based chemosensitivity and radiosensitivity tests, in vivo noninvasive photoacoustic cytometry and blood and lymph cancer tests. In particular, Zharov invented one of the first applications of nanotechnology for treating cancer and infections using laser-activated gold nanoparticles (U.S. Patent, 2000).

Recently, he was awarded by the $1.5 million five-year grant from the National Cancer Institute supporting one of the first clinical application of nanomedicine technology for early cancer diagnosis.

Biris earned his Ph.D. at UALR and joined the faculty in 2006. He and his team have filed 11 patent applications in nanotechnology, bio-nanotechnology, space exploration, and materials science areas. He is fully involved in studying the interaction of nanomaterials with biological systems and using use such novel nanostructures for targeting and killing cancer cells. He has more than 160 papers published in peer reviewed journals or presented at international conferences.

He was part of the team that designed and developed a newly patented electrodynamic screen for space exploration in collaboration with NASA. Patent applications are pending on his new method and technology for producing large quantities of carbon nanotubes with high purity. He led the design and development of carbon nanostructures-based filters to efficiently remove bio-chemical contaminants from air and water.

Biris also developed a unique tissue regeneration system that has been used successfully in 33 clinical studies to grow bone tissue. The work has been licensed to a spin-off company, Orlumet LLC, in which Biris serves as Chief Technical Officer.The co-founder is Peder Jensen.

Biris is honorary president and co-founder of the Romanian Nanomedicine Institute in his native country. In addition to his groundbreaking research and work with graduate and undergraguate students, Biris works one-on-one with gifted middle- and high school students in Arkansas.

He said the key to the Nanotechnology Center at UALR is its aggressive outreach program to train and educate young people and other world-class scientists who will serve and attract business and industry to Arkansas from the region and the nation.

####

For more information, please click here

Contacts:
Joan I. Duffy
UALR Office of Communications
501.569.8600
@JIDuffy

Andrea Peel
UAMS Office of Communications
(501) 686-8996, (501) 351-7903 (cell)

Copyright © University of Arkansas at Little Rock

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanotubes/Buckyballs/Fullerenes

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Self-healable battery Lithium ion battery for electronic textiles grows back together after breaking October 20th, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project