Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New catalyst could boost cleaner fuel use

Younan Xia
A new catalyst based on dendritic platinum arms grown on palladium nanocrystals has been developed by WUSTL's Younan Xia and his collaborators. Tests have shown that the "bimetallic" catalyst outperforms commercial catalysts, which could enable a cost effective fuel cell technology and ultimately provide cleaner fuels worldwide.
Younan Xia
A new catalyst based on dendritic platinum arms grown on palladium nanocrystals has been developed by WUSTL's Younan Xia and his collaborators. Tests have shown that the "bimetallic" catalyst outperforms commercial catalysts, which could enable a cost effective fuel cell technology and ultimately provide cleaner fuels worldwide.

Abstract:
Material scientists at Washington University in St. Louis have developed a technique for a bimetallic fuel cell catalyst that is efficient, robust and two-to-five times more effective than commercial catalysts. The novel technique eventually will enable a cost effective fuel cell technology, which has been waiting in the wings for decades and should give a boost for cleaner use of fuels worldwide.

New catalyst could boost cleaner fuel use

St. Louis, MO | Posted on May 14th, 2009

Younan Xia, Ph.D., the James M. McKelvey Professor of Biomedical Engineering at WUSTL led a team of scientists at WUSTL and the Brookhaven National Laboratory in developing a bimetallic catalyst comprised of a palladium core or "seed" that supports dendritic platinum branches, or arms, that are fixed on the nanostructure, consisting of a nine-nanometer core and seven-nanometer platinum arms. They synthesized the catalysts by sequentially reducing precursor compounds to palladium and platinum with L-ascorbic acid (that is, Vitamin C) in an aqueous solution. The catalysts have a high surface area, invaluable for a number of applications besides in fuel cells, and are robust and stable.

Xia and his team tested how the catalysts performed in the oxygen reduction reaction process in a fuel cell, which determines how large a current will be generated in an electrochemical system similar to the cathode of a fuel cell. They found that their bimetallic nanodendrites, at room temperature, were two-and-a-half times more effective per platinum mass for this process than the state of the art commercial platinum catalyst and five times more active than the other popular commercial catalyst. At 60 degrees C (the typical operation temperature of a fuel cell), the performance almost meets the targets set by the U.S. Department of Energy.

The Department of Energy has estimated for widespread commercial success the "loading" of platinum catalysts in a fuel cell should be reduced by four times in order to slash the costs. The WUSTL technique is expected to substantially reduce the loading of platinum, making a more robust catalyst that won't have to be replaced often, and making better use of a very limited and very expensive supply of platinum in the world.

The study was published in the online journal Science.

"There are two ways to make a more effective catalyst," Xia says. "One is to control the size, making it smaller, which gives the catalyst a higher specific surface area on a mass basis. Another is to change the arrangement of atoms on the surface. We did both. You can have a square or hexagonal arrangement for the surface atoms. We chose the hexagonal lattice because people have found that it's twice as good as the square one for the oxygen reduction reaction.

"We're excited by the technique, specifically with the performance of the new catalyst."

Xia says seeded growth has emerged recently as a good technique for precisely controlling the shape and composition of metallic nanostructures prepared in solutions. And it's the only technique that allowed Xia and his collaborators to come up with their unconventional shape.

"When you have something this small, the atoms tend to aggregate and that can reduce the surface area," Xia says. "A key reason our technique works is the ability to keep the platinum arms fixed. They don't move around. This adds to their stability. We also make sure of the arrangement of atoms on each arm, so we increase the activity."

Xia and his collaborators are exploring the possibility of adding other noble metals such as gold to the bimetallic catalysts, making them trimetallic. Gold has been shown to oxidize carbon monoxide, making for even more robust catalysts that can resist the poisoning by carbon monoxide a reduction byproduct of some fuels.

"Gold should make the catalysts more stable, durable and robust, giving yet another level of control," Xia says.

####

For more information, please click here

Contacts:
Susan Killenberg McGinn
Exec. Dir. of Danforth Campus Communications

(314) 935-5254

Subject Matter Experts:
Younan Xia

Work: (314) 935-8328

Copyright © Washington University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Discoveries

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Joint Efforts by Iranian, Malaysian Scientists Produce Antibacterial Coatings for Isolated Areas February 4th, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Energy

February 4th, 2016

Putting silicon 'sawdust' in a graphene cage boosts battery performance: Approach could remove major obstacles to increasing the capacity of lithium-ion batteries January 30th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Fuel Cells

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Teijin to Participate in Nano Tech 2016 January 21st, 2016

Fuel cell advance: Research team reports success with low-cost nickel-based catalyst January 18th, 2016

Production of Graphene Oxide Nanosheets to Economize Fuel Cells January 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic