Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Dimensional Crossover in Nano-size Particles

Abstract:
Professor CHOE Sug-bong found that nano-size particles could be reduced to the point where they exist in a blurred boundary between a two-dimensional and one-dimensional phase.

Dimensional Crossover in Nano-size Particles

Seoul, Korea | Posted on May 11th, 2009

CHOE's research marks the first time that the dimensional crossover from a two-dimensional planar object and a one-dimensional line has been observed, as well as the critical point where the phase boundary ceases to exist.

Professor CHOE said the latest findings add detail to the complex picture of nature's universal laws in phase transitions, which regulate everything from the transition between vapor and liquid to changes in stock markets and earthquakes.

The discovery could also contribute to advancing emerging technology fields such as nano-sprintronics and developing new methods for producing nano-materials, he said.

``The research was conducted to improve our knowledge of nature's universality in controlling natural phenomenon, but the fundamental logic revealed in our study also offers possibilities for industrial applications,'' CHOE said.

``Nano-size objects used in electronic devices are getting smaller and smaller, and it's easy to predict that the nano-particles will be reduced in size to a point where they make the transition from the three-dimensional regime to a two-dimensional regime, and eventually a one-dimensional regime. However, scientists have been coming short of revealing exactly at what size the transitions occurs and the process of the transition, and our study provides an advancement in this area,'' he said.

The crossover to the one-dimensional regime occurred at a few hundred nanometers, which corresponds to the integration scale for modern nano-devices, CHOE said.

When the widths of the nano-wires were between 4.2 micrometers to 756 nanometers, the motions of domain walls retained the speed of a two-dimensional phase.

However, crossover behavior was first detected when the nano-wires were reduced to 500 nanometers in width, and at the 150-nanometer level particles began showing one-dimensional characteristics.

``We were surprised to discover that the two dimensional characteristics and one-dimensional characteristics co-existed when the nano-particles were between 500 nanometers and 150 nanometers in width,'' CHOE said.

``For this certain material, the crossover to the one dimensional phase occurred when it was reduced below 150 nanometers, while it retained two dimensional characteristics above 500 nanometers.''

This study was published in journal Nature on April 8.

####

About Seoul National University
Seoul National University honors the ideals of liberal education and aims to teach students a lifelong love of learning that will form the basis for continuous personal growth.

At the same time it is committed to preparing students to work and live in an increasingly competitive global environment. As South Korea's first national university, Seoul National University has a tradition of standing up for democracy and peace on the Korean peninsula.

Graduates have long served as public servants in key positions of the Korean government. In teaching, research, and public service, Seoul National University continues to set the standard of excellence.

The mission of Seoul National University in the twenty-first century is to create a vibrant intellectual community where students and scholars join together in building the future. As Korea's leading research university, Seoul National University is committed to diversifying its student body and faculty, fostering global exchange, and promoting path-breaking research in all fields of knowledge.

For more information, please click here

Contacts:
Main Campus, Gwanak _ 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
Tel: 82-2-880-4447
Fax: 82-2-880-4449

Medical Campus, Yongon _103 Daehangno, Jongno-gu, Seoul 110-799, Korea

Copyright © Seoul National University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Materials/Metamaterials

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Industrial

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE