Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA physicists create world's smallest incandescent lamp

Artist's rendering of the two techniques used to "see" the carbon nanotube lamp: visible light microscopy (top) and electron microscopy (middle).
Artist's rendering of the two techniques used to "see" the carbon nanotube lamp: visible light microscopy (top) and electron microscopy (middle).

Abstract:
In an effort to explore the boundary between thermodynamics and quantum mechanics — two fundamental yet seemingly incompatible theories of physics — a team from the UCLA Department of Physics and Astronomy has created the world's smallest incandescent lamp.

UCLA physicists create world's smallest incandescent lamp

Los Angeles, CA | Posted on May 6th, 2009

The team, which is led by Chris Regan, assistant professor of physics and astronomy and a member of the California NanoSystems Institute at UCLA, and includes Yuwei Fan, Scott Singer and Ray Bergstrom, has published the results of their research May 5 in the online edition of the journal Physical Review Letters.

Thermodynamics, the crown jewel of 19th-century physics, concerns systems with many particles. Quantum mechanics, developed in the 20th century, works best when applied to just a few. The UCLA team is using their tiny lamp to study physicist Max Planck's black-body radiation law, which was derived in 1900 using principles now understood to be native to both theories.

Planck's law describes radiation from large, hot objects, such as a toaster, the Sun or a light bulb. Some such radiation is of fundamental and current scientific interest; the thermal radiation left over from the Big Bang, for instance, which is called the cosmic microwave background, is described by Planck's law.

The incandescent lamp utilizes a filament made from a single carbon nanotube that is only 100 atoms wide. To the unaided eye, the filament is completely invisible when the lamp is off, but it appears as tiny point of light when the lamp is turned on. Even with the best optical microscope, it is only just possible to resolve the nanotube's non-zero length. To image the filament's true structure, the team uses an electron microscope capable of atomic resolution at the Electron Imaging Center for Nanomachines (EICN) core lab at CNSI.

With less than 20 million atoms, the nanotube filament is both large enough to apply the statistical assumptions of thermodynamics and small enough to be considered as a molecular — that is, quantum mechanical — system.

"Our goal is to understand how Planck's law gets modified at small length scales," Regan said. "Because both the topic (black-body radiation) and the size scale (nano) are on the boundary between the two theories, we think this is a very promising system to explore."

The carbon nanotube makes an ideal filament for this experiment, since it has both the requisite smallness and the extraordinary temperature stability of carbon. While the intensive study of carbon nanotubes only began in 1991, using carbon in a light bulb is not a new idea. Thomas Edison's original light bulbs used carbon filaments.

The UCLA research team's light bulb is very similar to Edison's, except that their filament is 100,000 times narrower and 10,000 times shorter, for a total volume only one one-hundred-trillionth that of Edison's.

This research is supported by an National Science Foundation Career award #0748880.

####

About UCLA
The California NanoSystems Institute (CNSI) is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Jennifer Marcus,
310-267-4839

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Physics

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Quantum nanoscience

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

On-demand conductivity for graphene nanoribbons: Physicists from Uzbekistan and Germany have devised a theoretical model to tune the conductivity of graphene zigzag nanoribbons using ultra-short pulses November 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE