Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ADA Technologies Completes Phase I Research on Advanced Lithium-ion Nano-Batteries

Abstract:
ADA Technologies, Inc. has completed research that demonstrates the technical feasibility of developing advanced lithium-ion nano-batteries. Funded by the National Science Foundation, the $150,000 Phase I research focused on developing high-capacity / high-rate nano-structured electrodes that could be combined with environmentally benign electrolytes to significantly improve lithium-ion battery performance. The improvement in performance is due to the unique structures of nano-scale electrodes.

ADA Technologies Completes Phase I Research on Advanced Lithium-ion Nano-Batteries

DENVER, CO | Posted on May 6th, 2009

Lithium-ion batteries represent the current state-of-the-art technology for rechargeable batteries. However, performance (energy / power densities, safety, and cycle life) of currently available lithium-ion batteries is limited by electrode and electrolyte properties.

"The Phase I research was completely successful. Laboratory test batteries achieved excellent performance measures with the potential to achieve a two-fold increase in energy density and a ten-fold increase in power density compared to current state-of-the-art lithium-ion battery technology," said Wen Lu, Ph.D., project principal investigator and ADA Technologies senior research scientist.

Improvements in electrodes and electrolytes are needed to develop advanced lithium-ion batteries to satisfy increasing performance demands. Lithium-ion batteries are used in a wide range of applications, including consumer electronics (cell phones, laptops, pagers, camcorders), medical electronics (drug delivery units, portable defibrillators, neurological stimulators), transportation technology (electric vehicles, hybrid electric vehicles, plug-in hybrids), and military and defense (communication devices, unmanned aerial vehicles, spacecraft probes, missile systems).

ADA has received nearly $1 million in grant money for advanced energy storage technology R&D, including the development of lithium-ion batteries and ultracapacitors.

####

About ADA Technologies, Inc.
ADA Technologies, Inc. is a research, development, and commercialization company that specializes in creating and converting innovative technologies to commercial successes. The firm is headquartered in Littleton, Colorado, with offices on the University of Wyoming campus in Laramie and the Virginia Tech Corporate Research Center, Blacksburg, VA. ADA has received more than 130 research grants totaling more than $40 million. ADA has received numerous honors, including: 2006 Tibbetts Award, 2006, 2007 & 2008 Colorado Technology Fast 50, 2006 & 2007 Best Companies to Work For in Colorado and Colorado’s Top Technology Company 2005. For more information, please visit www.adatech.com or call 303-792-5615.

About Wen Lu, Ph.D.

Dr. Wen Lu oversees ADA’s R&D efforts in electrochemistry, electrochemical devices and materials science (inherently conducting polymers, electrolytes and nano materials). His work is focused on the applications of electrochemistry and materials science to the development of electrochemical devices, including electrochemical sensors/biosensors, electrochromic devices, electromechanical actuators, energy storage devices (batteries and ultracapacitors), energy conversion devices (fuel cells and photoelectrochemical cells), and environmental remediation devices.

Dr. Lu has authored more than 40 peer-reviewed articles on electrochemistry and electrochemical devices in prestigious journals including Science; he holds seven patents and is a sought-after presenter at professional meetings and workshops. His recent research on polymer electrochemical devices was listed among the major discoveries in molecular electronics by Chemical & Engineering News in its “Chemistry Highlights 2002” (C& EN, 80 (50), 46 (2002)). He was featured in an article entitled “Ionic liquids boost polymer performance,” published in C& EN (27 (80), 26 (2002)) and in an article entitled “Polymer devices live longer” published in Physics World (September 25, 2002). Dr. Lu is a member of The Electrochemical Society and International Society of Electrochemistry. He is a review panelist of the National Science Foundation SBIR/STTR Program and severs as a scientific reviewer for several scientific journals including Journal of The Electrochemical Society, Electrochimica Acta, Journal of Power Sources, Synthetic Metals, International Journal of Hydrogen Energy and Industrial & Engineering Chemistry Research.

Dr. Lu obtained a B.S. in Analytical Chemistry and an M.S. in Electrochemistry from Yunnan University in China, and a Ph.D. in Electrochemistry through the Intelligent Polymer Research Institute at the University of Wollongong in Australia.

For more information, please click here

Contacts:
Meredith Bagnulo
303-513-7494


Clifton H. Brown, Jr.
ADA Technologies, President & CEO
303-792-5615, x264

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Military

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Automotive/Transportation

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE