Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Nanotube Coating Enables Novel Laser Power Meter

Carbon nanotubes (black coating in photo, right) form the inner lining of NIST’s new laser power meter, enabling the copper instrument to withstand the intensity of military lasers while precisely measuring their power. Laser light is distributed evenly inside the water-cooled cavity by a mirror (diagonal component at center of graphic).

Credit: C. Cromer/NIST
Carbon nanotubes (black coating in photo, right) form the inner lining of NIST’s new laser power meter, enabling the copper instrument to withstand the intensity of military lasers while precisely measuring their power. Laser light is distributed evenly inside the water-cooled cavity by a mirror (diagonal component at center of graphic).

Credit: C. Cromer/NIST

Abstract:
The U.S. military can now calibrate high-power laser systems, such as those intended to defuse unexploded mines, more quickly and easily thanks to a novel nanotube-coated power measurement device developed at the National Institute of Standards and Technology (NIST).

New Nanotube Coating Enables Novel Laser Power Meter

Gaithersburg, MD | Posted on May 6th, 2009

The new laser power meter, tested at a U.S. Air Force base last week, will be used to measure the light emitted by 10-kilowatt (kW) laser systems. Light focused from a 10 kW laser is more than a million times more intense than sunlight reaching the Earth. Until now, NIST-built power meters, just like the lasers they were intended to measure, were barely portable and operated slowly. The new power meter is much smaller—about the size of a crock pot rather than a refrigerator. It also features a new design that enables it to make continuous power measurements.

A key innovation is the use of a sprayed-on coating of carbon nanotubes—tiny cylinders made of carbon atoms—which conduct heat hundreds of times better than conventional detector coating materials.

In the new power meter, laser light is absorbed in a cone-shaped copper cavity, where a spinning mirror directs the light over a large area and distributes the heat uniformly. The cavity is lined with a NIST-developed coating made of multiwalled carbon nanotubes held together by a potassium silicate (water glass) binder, and surrounded by a water jacket. The coating absorbs light and converts it to heat. The resulting rise in water temperature generates a current, which is measured to determine the power of the laser.

NIST has developed and maintained optical power standards for decades. In recent years, NIST researchers have experimented with a variety of coatings made of nanotubes because they offer an unusual combination of desirable properties, including intense black color for maximum light absorption. Designing a detector to collect and measure all of the power from a laser intended to significantly alter its target is a significant challenge. The new power meter uses the latest version of NIST's nanotube coating,* which absorbs light efficiently, is more stable than some conventional coatings such as carbon black, and resists laser damage as effectively as commercial ceramic coatings.

Among other test results, NIST has found that multiwalled carbon nanotubes perform better than single-walled nanotubes. Researchers are continuing to seek nanotube formulas that are durable and easy to apply, like enamel paint, but have even higher damage thresholds than today's coatings.

NIST's nanotube coating technology already has been transferred to industry for use in commercial products. Development of the new power meter was funded by the Air Force.

* C.L. Cromer, K.E. Hurst, X. Li and J.H. Lehman. Black optical coating for high-power laser measurements from carbon nanotubes and silicate. Optics Letters. January 15, 2009, Vol. 34, No. 2.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Discoveries

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Military

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Photonics/Optics/Lasers

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE