Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DOE to Establish Energy Frontier Research Center at UA

An organic photovoltaic cell on glass. The goal for UA scientists is to understand and control the interfaces in these devices at nanometer-length scales (less than 1/100,000 the thickness of a human hair) to enable the development of long-lived solar energy conversion devices on tough, flexible and extremely low-cost plastic substrates. Photo courtesy Neal Armstrong.
An organic photovoltaic cell on glass. The goal for UA scientists is to understand and control the interfaces in these devices at nanometer-length scales (less than 1/100,000 the thickness of a human hair) to enable the development of long-lived solar energy conversion devices on tough, flexible and extremely low-cost plastic substrates. Photo courtesy Neal Armstrong.

Abstract:
Researchers will work to develop flexible, ultra-thin photovoltaic collectors that can be easily and cheaply installed.

DOE to Establish Energy Frontier Research Center at UA

Tucson, AZ | Posted on May 5th, 2009

The University of Arizona in Tucson will become the home of a $15 million Energy Frontier Research Center, or EFRC, one of 46 new centers of its kind announced this week.

At the UA, research could one day lead to "Generation III" photovoltaic materials thin enough, flexible enough and inexpensive enough to go not only on rooftops but in windows, outdoor awnings and even clothing.

The Center for Interface Science: Hybrid Solar-Electric Materials, or CIS:HSEM, was announced by the White House in conjunction with a speech delivered by President Barack Obama on April 27 at the annual meeting of the National Academy of Sciences.

CIS:HSEM is one of two centers in Arizona. Arizona State University's Center for Bio-Inspired Solar Fuel Production is the other, and will collaborate with UA researchers.

The EFRCs, which will pursue advanced scientific research on new forms of solar energy conversion, energy storage, solid-state lighting and related technologies, are being established by the U.S. Department of Energy Office of Science at universities, national laboratories, nonprofit organizations, and private firms across the nation.

CIS:HSEM is specifically one of 16 EFRC's to be funded by President Obama's American Recovery and Reinvestment Act. The 46 EFRCs will each receive funding between $2 and $5 million per year for a planned initial five-year period.

"As global energy demand grows over this century, there is an urgent need to reduce our dependence on fossil fuels and imported oil and curtail greenhouse gas emissions," said Secretary of Energy Steven Chu.

"Meeting this challenge will require significant scientific advances," Chu added. "These Centers will mobilize the enormous talents and skills of our nation's scientific workforce in pursuit of the breakthroughs that are essential to make alternative and renewable energy truly viable as large-scale replacements for fossil fuels."

The centers were selected from a pool of some 260 applications received in response to a solicitation issued by the U.S. Department of Energy Office of Science in 2008. Selection was based on a rigorous merit review process utilizing outside panels composed of scientific experts.

"We look forward to being the lead institution for CIS:HSEM at The University of Arizona, and to working with our partner institutions," said Neal R. Armstrong, director of CIS:HSEM and a UA professor of optical sciences.

"The science of interfaces between different organic and inorganic materials is at the heart of the development of new ‘Generation III' photovoltaic technologies. Current photovoltaic technology, such as rooftop collectors, is Generation I," Armstrong said, adding that this should result in an inexpensive and lightweight power source for the future.

"To realize the high efficiencies and low cost such technologies promise will require an unprecedented understanding and control of molecules and molecular composition at nanometer length scales," Armstrong added.

He also said CIS:HSEM was chosen in part because of the unique ensemble of nanometer-scale characterization technologies and interface scientists at the UA.

"CIS:HSEM will foster the scientific research that will enable these new technologies to become reality," Armstrong said.

"The investigators in CIS:HSEM look forward to being a national resource for the study of molecule-based energy conversion systems, and will play a key role in the training of future scientists and leaders in the basic science of solar energy conversion," he added.

The impact of the funding, Armstrong said, is likely to be substanail and immediate in the state of Arizona and that it will be "synergistic" with other forms of funding and also with other organizations and institutes that are already involved in solar initiatives.

EFRC researchers will take advantage of new capabilities in nanotechnology, high-intensity light sources, neutron scattering sources, supercomputing, and other advanced instrumentation, much of it developed with the Department of Energy's Office of Science support over the past decade, in an effort to lay the scientific groundwork for fundamental advances in solar energy, biofuels, transportation, energy efficiency, electricity storage and transmission, clean coal and carbon capture and sequestration, and nuclear energy.

Of the EFRCs selected, 31 are led by universities, 12 by DOE National Laboratories, two by nonprofit organizations, and one by a corporate research laboratory. The criterion for providing an EFRC with Recovery Act funding was job creation. The EFRCs chosen for funding under the Recovery Act provide the most employment for postdoctoral associates, graduate students, undergraduates and technical staff, in keeping with the Recovery Act's objective to preserve and create jobs and promote economic recovery.

####

For more information, please click here

Contacts:
Neal R. Armstrong
520-621-8242

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project