Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DOE to Establish Energy Frontier Research Center at UA

An organic photovoltaic cell on glass. The goal for UA scientists is to understand and control the interfaces in these devices at nanometer-length scales (less than 1/100,000 the thickness of a human hair) to enable the development of long-lived solar energy conversion devices on tough, flexible and extremely low-cost plastic substrates. Photo courtesy Neal Armstrong.
An organic photovoltaic cell on glass. The goal for UA scientists is to understand and control the interfaces in these devices at nanometer-length scales (less than 1/100,000 the thickness of a human hair) to enable the development of long-lived solar energy conversion devices on tough, flexible and extremely low-cost plastic substrates. Photo courtesy Neal Armstrong.

Abstract:
Researchers will work to develop flexible, ultra-thin photovoltaic collectors that can be easily and cheaply installed.

DOE to Establish Energy Frontier Research Center at UA

Tucson, AZ | Posted on May 5th, 2009

The University of Arizona in Tucson will become the home of a $15 million Energy Frontier Research Center, or EFRC, one of 46 new centers of its kind announced this week.

At the UA, research could one day lead to "Generation III" photovoltaic materials thin enough, flexible enough and inexpensive enough to go not only on rooftops but in windows, outdoor awnings and even clothing.

The Center for Interface Science: Hybrid Solar-Electric Materials, or CIS:HSEM, was announced by the White House in conjunction with a speech delivered by President Barack Obama on April 27 at the annual meeting of the National Academy of Sciences.

CIS:HSEM is one of two centers in Arizona. Arizona State University's Center for Bio-Inspired Solar Fuel Production is the other, and will collaborate with UA researchers.

The EFRCs, which will pursue advanced scientific research on new forms of solar energy conversion, energy storage, solid-state lighting and related technologies, are being established by the U.S. Department of Energy Office of Science at universities, national laboratories, nonprofit organizations, and private firms across the nation.

CIS:HSEM is specifically one of 16 EFRC's to be funded by President Obama's American Recovery and Reinvestment Act. The 46 EFRCs will each receive funding between $2 and $5 million per year for a planned initial five-year period.

"As global energy demand grows over this century, there is an urgent need to reduce our dependence on fossil fuels and imported oil and curtail greenhouse gas emissions," said Secretary of Energy Steven Chu.

"Meeting this challenge will require significant scientific advances," Chu added. "These Centers will mobilize the enormous talents and skills of our nation's scientific workforce in pursuit of the breakthroughs that are essential to make alternative and renewable energy truly viable as large-scale replacements for fossil fuels."

The centers were selected from a pool of some 260 applications received in response to a solicitation issued by the U.S. Department of Energy Office of Science in 2008. Selection was based on a rigorous merit review process utilizing outside panels composed of scientific experts.

"We look forward to being the lead institution for CIS:HSEM at The University of Arizona, and to working with our partner institutions," said Neal R. Armstrong, director of CIS:HSEM and a UA professor of optical sciences.

"The science of interfaces between different organic and inorganic materials is at the heart of the development of new ‘Generation III' photovoltaic technologies. Current photovoltaic technology, such as rooftop collectors, is Generation I," Armstrong said, adding that this should result in an inexpensive and lightweight power source for the future.

"To realize the high efficiencies and low cost such technologies promise will require an unprecedented understanding and control of molecules and molecular composition at nanometer length scales," Armstrong added.

He also said CIS:HSEM was chosen in part because of the unique ensemble of nanometer-scale characterization technologies and interface scientists at the UA.

"CIS:HSEM will foster the scientific research that will enable these new technologies to become reality," Armstrong said.

"The investigators in CIS:HSEM look forward to being a national resource for the study of molecule-based energy conversion systems, and will play a key role in the training of future scientists and leaders in the basic science of solar energy conversion," he added.

The impact of the funding, Armstrong said, is likely to be substanail and immediate in the state of Arizona and that it will be "synergistic" with other forms of funding and also with other organizations and institutes that are already involved in solar initiatives.

EFRC researchers will take advantage of new capabilities in nanotechnology, high-intensity light sources, neutron scattering sources, supercomputing, and other advanced instrumentation, much of it developed with the Department of Energy's Office of Science support over the past decade, in an effort to lay the scientific groundwork for fundamental advances in solar energy, biofuels, transportation, energy efficiency, electricity storage and transmission, clean coal and carbon capture and sequestration, and nuclear energy.

Of the EFRCs selected, 31 are led by universities, 12 by DOE National Laboratories, two by nonprofit organizations, and one by a corporate research laboratory. The criterion for providing an EFRC with Recovery Act funding was job creation. The EFRCs chosen for funding under the Recovery Act provide the most employment for postdoctoral associates, graduate students, undergraduates and technical staff, in keeping with the Recovery Act's objective to preserve and create jobs and promote economic recovery.

####

For more information, please click here

Contacts:
Neal R. Armstrong
520-621-8242

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic