Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Blurring the Line Between Magic and Science: Berkeley Researchers Create an “Invisibility Cloak”

These three images depict how light striking an object covered with the carpet cloak acts as if there were no object being concealed on the flat surface. In essence, the object has become invisible. (Image by Thomas Zentgraf)
These three images depict how light striking an object covered with the carpet cloak acts as if there were no object being concealed on the flat surface. In essence, the object has become invisible. (Image by Thomas Zentgraf)

Abstract:
The great science fiction writer Arthur C. Clarke famously noted the similarities between advanced technology and magic. This summer on the big screen, the young wizard Harry Potter will once again don his magic invisibility cloak and disappear. Meanwhile, researchers with Berkeley Lab and the University of California (UC) Berkeley will be studying an invisibility cloak of their own that also hides objects from view.

Blurring the Line Between Magic and Science: Berkeley Researchers Create an “Invisibility Cloak”

Berkeley, CA | Posted on May 4th, 2009

A team led by Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center, has created a "carpet cloak" from nanostructured silicon that conceals the presence of objects placed under it from optical detection. While the carpet itself can still be seen, the bulge of the object underneath it disappears from view. Shining a beam of light on the bulge shows a reflection identical to that of a beam reflected from a flat surface, meaning the object itself has essentially been rendered invisible.

"We have come up with a new solution to the problem of invisibility based on the use of dielectric (nonconducting) materials," says Zhang. "Our optical cloak not only suggests that true invisibility materials are within reach, it also represents a major step towards transformation optics, opening the door to manipulating light at will for the creation of powerful new microscopes and faster computers."

Zhang and his team have published a paper on this research in the journal Nature Materials entitled: An Optical Cloak Made of Dielectrics. Co-authoring the paper with Zhang were Jason Valentine, Jensen Li, Thomas Zentgraf and Guy Bartal, all members of Zhang's research group.

Previous work by Zhang and his group with invisibility devices involved complex metamaterials - composites of metals and dielectrics whose extraordinary optical properties arise from their unique structure rather than their composition. They constructed one material out of an elaborate fishnet of alternating layers of silver and magnesium fluoride, and another out of silver nanowires grown inside porous aluminum oxide. With these metallic metamaterials, Zhang and his group demonstrated that light can be bent backwards, a property unprecedented in nature.

While metallic metamaterials have been successfully used to achieve invisibility cloaking at microwave frequencies, until now cloaking at optical frequencies, a key step towards achieving actual invisibility, has not been successful because the metal elements absorb too much light.

Says Zhang, "Even with the advances that have been made in optical metamaterials, scaling sub-wavelength metallic elements and placing them in an arbitrarily designed spatial manner remains a challenge at optical frequencies."

The new cloak created by Zhang and his team is made exclusively from dielectric materials, which are often transparent at optical frequencies. The cloak was demonstrated in a rectangular slab of silicon (250 nanometers thick) that serves as an optical waveguide in which light is confined in the vertical dimension but free to propagate in the other two dimensions. A carefully designed pattern of holes - each 110 nanometers in diameter - perforates the silicon, transforming the slab into a metamaterial that forces light to bend like water flowing around a rock. In the experiments reported in Nature Materials, the cloak was used to cover an area that measured about 3.8 microns by 400 nanometers. It demonstrated invisibility at variable angles of light incident.

Right now the cloak operates for light between 1,400 and 1,800 nanometers in wavelength, which is the near-infrared portion of the electromagnetic spectrum, just slightly longer than light that can be seen with the human eye. However, because of its all dielectric composition and design, Zhang says the cloak is relatively easy to fabricate and should be upwardly scalable. He is also optimistic that with more precise fabrication this all dielectric approach to cloaking should yield a material that operates for visible light - in other words, true invisibility to the naked eye.

"In this experiment, we have demonstrated a proof of concept for optical cloaking that works well in two dimensions" says Zhang. "Our next goal is to realize a cloak for all three dimensions, extending the transformation optics into potential applications."

This research was funded in part by the U.S. Department of Energy's Office of Science through its Basic Energy Sciences program and by the U.S. Army Research Office.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This video shows how a beam of light is obstructed by an object on a flat surface and casts a shadow until the object is cloaked, at which point the light is reflected as if the surface were still perfectly flat. (Video by Jensen Li)

A copy of the Nature Materials paper “An Optical Cloak Made of Dielectrics” by Zhang, et al., can be read here:

For more information about the research of Xiang Zhang, visit his Website at:

To learn more about the earlier work by Zhang and his group on invisibility read a UC Berkeley press release at:

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Videos/Movies

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

A billion holes can make a battery November 10th, 2014

Manipulating complex molecules by hand: New method in scanning probe microscopy: Jülich researchers create a word using 47 molecules November 6th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE