Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > More Design Tools for High-Power LED BriteFlash in Camera Phones, Digital Cameras

Supercapacitor-Optimized LED Flash Drivers Integrate Circuitry Outlined in Blue
Supercapacitor-Optimized LED Flash Drivers Integrate Circuitry Outlined in Blue

Supercapacitor-optimized LED flash drivers from AnalogicTech, ON Semiconductor facilitate design

More Design Tools for High-Power LED BriteFlash in Camera Phones, Digital Cameras

Sydney, Australia | Posted on May 3rd, 2009

CAP-XX Limited (LSE:CPX), developer of the supercapacitor-driven BriteFlash Power Architecture, today announced availability of supercapacitor-optimized LED flash drivers from several power management integrated circuit (PMIC) companies to facilitate design of high-power LED flash units for high-resolution camera phones and digital cameras.

AnalogicTech's AAT1282, and ON Semiconductor's CAT3224 and soon-to-be-released NCP5680 supercapacitor-optimized LED flash drivers team with a thin, prismatic supercapacitor to drive today's high-current white LEDs (WLEDs) in a thin-form solution which provides comparable light energy to a bulky xenon flash. These LED flash drivers integrate all circuitry required to charge the supercapacitor, manage in-rush current and control LED current, thus saving development time, board space and component cost. Both Seoul Semiconductor and ON Semiconductor have created LED flash module reference designs that demonstrate the thin-form BriteFlash solution.

"This is valuable for our customers, since it offers a more integrated approach to incorporating BriteFlash into small mobile handsets and digital cameras," said Peter Buckle, CAP-XX vice president of sales and marketing. More supercapacitor-optimized LED flash drivers are in late-stage development at other PMIC companies, reported CAP-XX.

To produce high-resolution pictures in low-light conditions, cameras of 5 or more megapixels require a high-intensity flash. Today's WLEDs can deliver such light energy, but need up to 400% more power than a battery can provide. To support the battery, a thin supercapacitor can drive the LED flash to full intensity while also handling other peak-power needs - zoom, auto-focus, audio, video, wireless transmissions, GPS readings and RF amplification - without compromising slimline design.

CAP-XX developed the BriteFlash Power Architecture to give designers a thin-form LED flash solution that delivers light energy that far exceeds standard battery-powered LED flash and rivals xenon flash.

BriteFlash combines an LED flash driver IC, supercapacitor, battery and WLEDs. The flash driver's boost converter charges the supercapacitor to 5.5V, which then delivers high-peak current to drive the LED flash. The battery only supplies average power, and recharges the supercapacitor between flashes. A white paper explains more at:

Supercapacitor-optimized LED flash drivers integrate tools to manage the supercapacitor in power-hungry portable applications. ON Semiconductor's low-power business unit director, Marie-Therese Capron, explains their two solutions. "While CAT3224 is an integrated 4A LED driver for compact camera-flash design, our upcoming NCP5680 is a 10A LED driver featuring fully-programmable outputs via I2C interface, and power regulation capability to drive other power-hungry circuitry such as audio. Both solutions provide high-intensity photo flash plus continuous lighting for capturing video in dark environments."

Phil Dewsbury, product line director for AnalogicTech said, "Lithium Ion batteries simply cannot supply the high-peak currents required for high-intensity LED flash. Supercapacitors can store the required energy while keeping the form factor small. However, charging them quickly while minimizing battery current presented a unique challenge. Our solution was the AAT1282, a 2A, dual-output LED flash driver IC. Since its introduction, EDN has named the chip a finalist in the magazine's annual Innovation Awards. We are also sampling the AAT1282-4 which boosts output to 4A to support higher-megapixel cameras."


About CAP-XX Limited
CAP-XX is a world leader in thin, flat supercapacitors for space-constrained electronics devices. Supercapacitors resolve the performance limitations of batteries and other current-limited power supplies, bridging the gap between the peak power demanded by the load and that available from the source, and provide backup power if the primary power source fails.

CAP-XX supercapacitors enable manufacturers to make smaller, thinner, longer-running and more feature-rich electronic devices such as camera phones, SSDs, PDAs, wireless sensors and medical devices. The company is listed on the Alternative Investment Market (AIM) in London and is based in Sydney, Australia with sales offices in the UK and USA.

For more information, please click here

Michelle Moody
Moody & Associates

Karolien Cools-Wittry
karoliencw at

ON Semiconductor:
Helene Acrosse
+33 5 34 61 10 00

Copyright © CAP-XX Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Display technology/LEDs/SS Lighting/OLEDs

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Memory Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Domain walls in nanowires cleverly set in motion: Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications April 8th, 2014

Innovative technique to conduct faster bioassays March 18th, 2014


Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Trees go high-tech: process turns cellulose into energy storage devices April 7th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE