Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive

Abstract:
A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives. Following up on their original research identifying the key characteristics controlling this transition from a water-based gel into a powerful yet flexible adhesive, researchers at Ithaca College have shed new light on the nature of the adhesive mechanism.

Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive

Ithaca, NY | Posted on May 2nd, 2009

"The strength of the natural adhesive comes from the way long, rope-like polymers chemically tie together, or cross link, at certain points," said Andrew Smith, associate professor of biology. "In our previous studies we had shown that metals were essential to the formation of cross-links. This is unusual, as some combination of electrostatic and hydrophobic interactions are commonly responsible for the formation of cross-links in other gels."

Electrostatic interactions occur when a negatively charged group on one polymer is attracted to a positively charged group on another. Hydrophobic interactions take place when regions of a polymer don't interact with water, so they stick together to avoid contacting water.

"We used several approaches to break these interactions, and the treatments that normally disrupt them had no impact on the glue's mechanical integrity or ability to set," Smith said. "Our study conclusively showed that electrostatic and hydrophobic interactions do not play any detectable role. Removing metals alone caused the glue to fall apart. This was exciting and unexpected."

Removing the metals, however, didn't completely break down the gel. The researchers discovered that a specific protein was responsible for forming strong cross-links that were unaffected when the metals were removed after the glue set. But when metals were removed before the glue set, the cross-links didn't form.
"This is a very unusual material we're looking at," Smith said. "By discovering that metals are central to forming cross-links, we know there are several intriguing mechanisms that could hold the glue together."

For example, zinc, calcium and iron ions can bind very strongly to several molecules at the same time, thereby effectively joining them together. Iron and copper can also catalyze reactions that trigger strong cross-link formation.

"The significance of this is that we are much farther along the path to our goal of identifying how the glue works so that synthetic mimics can be made," Smith said.

The study, "Robust Cross-links in Molluscan Adhesive Gels: Testing for Contributions from Hydrophobic and Electrostatic Interactions," was published in "Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology."

####

For more information, please click here

Contacts:
Keith Davis
assistant director
media relations
Ithaca College
(607) 274-1153

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project