Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Storing a Lightning Bolt in Glass for Portable Power

Abstract:
Penn State materials researchers have reported the largest known energy storage capacity for a bulk glass, making it a potential new candidate for capacitors for electric vehicles and portable power applications.

Storing a Lightning Bolt in Glass for Portable Power

University Park, PA | Posted on May 1st, 2009

Materials researchers at Penn State University have reported the highest known breakdown strength for a bulk glass ever measured. Breakdown strength, along with dielectric constant, determines how much energy can be stored in an insulating material before it fails and begins to conduct electricity. A bulk glass with high breakdown strength and high dielectric constant would make an ideal candidate for the next generation of high energy density storage capacitors to power more efficient electric vehicles, as well as other portable and pulsed power applications.

The highest dielectric breakdown strengths for bulk glasses are typically in the 4-9MV/cm range. The breakdown strength for the tested samples were in the 12MV/cm range, which in conjunction with a relatively high permittivity, resulted in energy densities of 35 J/cm3, as compared to a maximum energy density of 10 J/cm3 for polypropylene, the most common dielectric for pulsed power applications.

"For a bulk glass, this is extraordinary," says Nick Smith, a Ph.D. candidate in materials science and engineering at Penn State, who is lead author on the report and performed the testing. Smith used samples of 50 micron-thick commercial glass, which he etched for testing with hydrofluoric acid until the samples were only 10-20 microns thick. The resulting glass was so thin it could be flexed like a piece of plastic film, yet so delicate it could easily disintegrate if mishandled. The thinner the glass, the more electric field can be applied before failure.

The etched glass was placed in a polymer fluid for testing and up to 30,000 volts were applied. When the breakdown point was reached, electricity began to flow through the glass suddenly, with a flash and a bang that resembles a lightning bolt conducting through air. The polymer fluid was used to contain the lightning. In each case, failure occurred within 40 to 80 seconds.

The bulk glass tested is an alkali-free barium boroaluminosilicate glass produced in large quantities for flat panel displays and microelectronics packaging. Its high energy storage capability is attributed to the highly polarizable barium atoms, which contribute to the enhanced permittivity, and the alkali-free composition, which inhibits energy loss. Also a factor is the nearly defect-free quality of the glass. The specific process used to manufacture this glass yields a more flaw-free material, especially at the surface, which further enhances resistance to breakdown. Sheets of 30-micron-thick glass, which are expected to be available commercially in the near future, are likely to have even higher breakdown strength than the etched glass due to an even more uniform flaw-free surface. "This opens a potentially new market for glass," says Smith. "We are always looking for new functionalities in glass. Ideally, manufacturing will get to a point where they can make any size sheet they need for any size capacitor."

Contributing author Michael Lanagan points out that engineering challenges remain as they scale up from the small size glass capacitors tested to those ready for commercial production. "We'll lose some of the energy density as we increase in volume," he says, "but we should still end up with some remarkable capacitance."

A paper reporting their results, titled "Glass as a High Energy Density Dielectric Material," is currently available online and in the June 2009 edition of Materials Letters. In addition to Smith, the authors are graduate student Badri Rangarajan, engineering science and mechanics, Michael T. Lanagan, associate professor of engineering science and mechanics, and Carlo G. Pantano, distinguished professor of materials science and engineering.

This research was supported by the Office of Naval Research, the Pennsylvania State University Materials Research Institute, the National Science Foundation, the Center for Optical Technologies, and Bayer MaterialScience LLC.

####

About Penn State Materials Research Institute
The Materials Research Institute coordinates the research of more than 200 materials scientists at Penn State. The Millennium Science Complex, now under construction, is a $225M facility for materials and life sciences research scheduled to open at University Park in summer 2011.

For more information, please click here

Contacts:
Nicholas J Smith


Michael Lanagan

(814) 865-6992

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Discoveries

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Automotive/Transportation

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE