Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanocolloids identify blood clots

May 1st, 2009

Nanocolloids identify blood clots

Abstract:
US and UK scientists have discovered a safer contrast agent for magnetic resonance imaging (MRI). The agent is an alternative to commonly used, but potentially harmful, gadolinium-based agents.

MRI uses paramagnetic metals (contrast agents) to produce high resolution, non-invasive images of the body's internal structure. It is particularly useful in cardiovascular research for visualising blood clots in arteries, which can cause heart attacks and strokes. Although scientists normally use gadolinium as the contrast agent, its recent association with a serious tissue disorder in patients with kidney failure has prompted the development of new, safer imaging agents.

Dipanjan Pan, at Washington University School of Medicine, St Louis, US, and colleagues stirred manganese oxide nanoparticles in a vegetable oil and surfactant mixture to form manganese oxide nanocolloids with phospholipid shells. They showed that the nanocolloids are highly sensitive to fibrin, a major component of blood clots, and so are effective contrast agents.

The colloids can be easily metabolised and excreted by the human body, explains Pan, unlike other manganese-based contrast agents, which are difficult to eliminate and create a hazardous tissue residue. 'Bigger metal crystals are not metabolised and they are typically too large to be excreted through the kidney or bile, presenting an issue for long-term safety. We incorporate tiny manganese oxides or organically soluble chelated manganese into a stable nanoparticle, which is constrained within the vasculature [blood vessels]. This inherent difference over non-excretable nanocrystals should greatly improve the prospects of safety and clinical translation.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project