Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Nanocolloids identify blood clots

May 1st, 2009

Nanocolloids identify blood clots

Abstract:
US and UK scientists have discovered a safer contrast agent for magnetic resonance imaging (MRI). The agent is an alternative to commonly used, but potentially harmful, gadolinium-based agents.

MRI uses paramagnetic metals (contrast agents) to produce high resolution, non-invasive images of the body's internal structure. It is particularly useful in cardiovascular research for visualising blood clots in arteries, which can cause heart attacks and strokes. Although scientists normally use gadolinium as the contrast agent, its recent association with a serious tissue disorder in patients with kidney failure has prompted the development of new, safer imaging agents.

Dipanjan Pan, at Washington University School of Medicine, St Louis, US, and colleagues stirred manganese oxide nanoparticles in a vegetable oil and surfactant mixture to form manganese oxide nanocolloids with phospholipid shells. They showed that the nanocolloids are highly sensitive to fibrin, a major component of blood clots, and so are effective contrast agents.

The colloids can be easily metabolised and excreted by the human body, explains Pan, unlike other manganese-based contrast agents, which are difficult to eliminate and create a hazardous tissue residue. 'Bigger metal crystals are not metabolised and they are typically too large to be excreted through the kidney or bile, presenting an issue for long-term safety. We incorporate tiny manganese oxides or organically soluble chelated manganese into a stable nanoparticle, which is constrained within the vasculature [blood vessels]. This inherent difference over non-excretable nanocrystals should greatly improve the prospects of safety and clinical translation.'

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Imaging

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project