Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Better photocells from bigger Buckyballs

April 15th, 2009

Better photocells from bigger Buckyballs

Abstract:
Much research activity is presently devoted to organic photovoltaic devices (OPV), in particular ones comprising polymers as donors and a variety of C60 fullerenes with organic molecules attached as acceptors. Now, a group of scientists collaborating from several research institutions, namely the Georgetown University, Washington DC, Luna Innovations Inc., Virginia, the Friedrich-Alexander-Universität, Erlangen, Germany, the National Renewable Energy Laboratory, Colorado, and the University of Santa Barbara have developed a novel fullerene species for this application [Ross, et al., Nature Materials (2009), doi:10.1038/NMAT2379].

"We believe that our discovery is a significant contribution to the improvement in conversion efficiencies of organic solar cells," says Martin Drees, corresponding author. In contrast to the acceptor materials utilized to date, Drees and his colleagues used fullerenes large enough to incarcerate trimetallic nitrides (therefore called trimetallic nitride endohedral fullerenes, or TNEFs) and filled them with Lu3N. The main advantage over the presently used empty C60 molecules and their derivatives is the higher open circuit voltage. Drees and his group found values of about 890 mV (in comparison to 630 mV for present state-of-the-art C60 devices), in fact the highest reported for any fullerene OPV. The reason for the low voltage output of the C60 devices is the orbital mismatch of the donor polymer and the fullerene acceptors, a situation which the researchers could significantly improve by incorporating Lu3N-ions in the bigger fullerenes.

Source:
materialstoday.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar Sarıçiftçi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project