Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Better photocells from bigger Buckyballs

April 15th, 2009

Better photocells from bigger Buckyballs

Abstract:
Much research activity is presently devoted to organic photovoltaic devices (OPV), in particular ones comprising polymers as donors and a variety of C60 fullerenes with organic molecules attached as acceptors. Now, a group of scientists collaborating from several research institutions, namely the Georgetown University, Washington DC, Luna Innovations Inc., Virginia, the Friedrich-Alexander-Universitšt, Erlangen, Germany, the National Renewable Energy Laboratory, Colorado, and the University of Santa Barbara have developed a novel fullerene species for this application [Ross, et al., Nature Materials (2009), doi:10.1038/NMAT2379].

"We believe that our discovery is a significant contribution to the improvement in conversion efficiencies of organic solar cells," says Martin Drees, corresponding author. In contrast to the acceptor materials utilized to date, Drees and his colleagues used fullerenes large enough to incarcerate trimetallic nitrides (therefore called trimetallic nitride endohedral fullerenes, or TNEFs) and filled them with Lu3N. The main advantage over the presently used empty C60 molecules and their derivatives is the higher open circuit voltage. Drees and his group found values of about 890 mV (in comparison to 630 mV for present state-of-the-art C60 devices), in fact the highest reported for any fullerene OPV. The reason for the low voltage output of the C60 devices is the orbital mismatch of the donor polymer and the fullerene acceptors, a situation which the researchers could significantly improve by incorporating Lu3N-ions in the bigger fullerenes.

Source:
materialstoday.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE