Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Better photocells from bigger Buckyballs

April 15th, 2009

Better photocells from bigger Buckyballs

Abstract:
Much research activity is presently devoted to organic photovoltaic devices (OPV), in particular ones comprising polymers as donors and a variety of C60 fullerenes with organic molecules attached as acceptors. Now, a group of scientists collaborating from several research institutions, namely the Georgetown University, Washington DC, Luna Innovations Inc., Virginia, the Friedrich-Alexander-Universitšt, Erlangen, Germany, the National Renewable Energy Laboratory, Colorado, and the University of Santa Barbara have developed a novel fullerene species for this application [Ross, et al., Nature Materials (2009), doi:10.1038/NMAT2379].

"We believe that our discovery is a significant contribution to the improvement in conversion efficiencies of organic solar cells," says Martin Drees, corresponding author. In contrast to the acceptor materials utilized to date, Drees and his colleagues used fullerenes large enough to incarcerate trimetallic nitrides (therefore called trimetallic nitride endohedral fullerenes, or TNEFs) and filled them with Lu3N. The main advantage over the presently used empty C60 molecules and their derivatives is the higher open circuit voltage. Drees and his group found values of about 890 mV (in comparison to 630 mV for present state-of-the-art C60 devices), in fact the highest reported for any fullerene OPV. The reason for the low voltage output of the C60 devices is the orbital mismatch of the donor polymer and the fullerene acceptors, a situation which the researchers could significantly improve by incorporating Lu3N-ions in the bigger fullerenes.

Source:
materialstoday.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project