Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Dubai-based tech institute claims major breakthrough

February 28th, 2009

Dubai-based tech institute claims major breakthrough

Abstract:
Your mobile phones and computers will become faster, more powerful and even smaller than they are now, thanks to a technological development by the Dubai Silicon Oasis-based Rochester Institute of Technology (RIT).

According to experts at RIT, advances in the past 40 years in electronics were achieved by making smaller devices that allow for placing more of them on the same chip.

RIT's research in nanophotonics and nanoplasmonics has resulted in "squeezing" or confining light in almost 20nmx20nm. This is a very significant result because it will enable them to make electronic devices even smaller than the existing ones and that means more computer power with faster devices that consume less power. Hence, once this technology hits the market your computer and mobile phone will become more powerful and even smaller.

Dr Mustafa AG Abushagur, President and Dean of RIT Dubai, told Emirates Business: "Electronics has changed the way we live, communicate, entertain and do business for the past 30 or so years. This was made possible by the invention of the integrated circuit (IC), which made possible the fabrication of a large number of transistors (switches) on the same silicon chip. What we have achieved at RIT is very significant because it will enable us to reduce the size of transistors to a level that is impossible now. This means that your computers, mobile phones, PDAs and other electronic devices will become much smaller, cheaper, faster and more powerful."

Source:
business24-7.ae

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project