Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > TOK Signs an LOI to Join SEMATECH for Joint Development on Next Generation Photoresists for EUV Lithography

Abstract:
Collaboration at UAlbany NanoCollege will address resolution, line-width roughness, and pattern collapse challenges

TOK Signs an LOI to Join SEMATECH for Joint Development on Next Generation Photoresists for EUV Lithography

Albany, NY and Austin, TX | Posted on February 24th, 2009

SEMATECH, a global consortium of chipmakers, announced today that it has signed a Letter of Intent (LOI) with Tokyo Ohka Kogyo Co., Ltd. (TOK), a leading manufacturer of photoresists, establishing the groundwork for a joint development agreement on collaborative efforts to optimize and develop new advanced imaging materials for extreme ultraviolet (EUV) lithography.

As a Resist member of SEMATECH's lithography program, TOK will collaborate with experts at SEMATECH's EUV Resist and Materials Development Center (RMDC) at the College of Nanoscale Science and Engineering (CNSE) of the University at Albany to develop and demonstrate advanced EUV photoresist for use at the 22 nm node and beyond.

"This LOI sets out the framework for a new level of collaboration between SEMATECH and TOK on next generation EUVL technologies," said John Warlaumont, vice president of advanced technologies, SEMATECH. "We believe that the ability and experience of TOK combined with SEMATECH's expertise in EUV photoresist will accelerate our progress in tackling key challenges - such as resolution, line-width roughness, and pattern collapse - in the critical area of advanced imaging."

"As the world-class research and development capabilities at the UAlbany NanoCollege enable critical advances in EUV technology, the addition of TOK to the SEMATECH-CNSE partnership will serve to enhance and expand those efforts," said Richard Brilla, vice president for strategy, alliances and consortia at CNSE. "We are delighted to welcome TOK to CNSE's Albany NanoTech, where it joins the growing number of worldwide corporate partners who recognize New York's global leadership in nanoscale education, innovation and economic development."

Over the past year, significant advances in EUV resists have been enabled by SEMATECH's EUV RMDC through its two micro-exposure tools (METs) located at the CNSE and at Lawrence Berkeley National Laboratory. Through SEMATECH's EUV resist development program, engineers and resist suppliers have made significant progress in improving resist resolution; the most recent results have demonstrated 22 nm half-pitch resolution.

The goal of SEMATECH's RMDC is to provide world-class exposure capability and serve as the leading center for supplier resist and materials research to enable 22 nm patterning technologies and beyond. As part of its ongoing effort to create flexible participation options for materials and equipment manufacturers, SEMATECH has opened its resist program to participation from companies such as TOK, to enable broader and deeper partnerships for advanced materials development.



About TOK:

Tokyo Ohka Kogyo Co.,Ltd is a leading manufacturer of photoresists, focusing on semiconductor photoresists and photoresist, ancillary chemical l, as well as LCD photoresists, dielectric materials, and processing equipment for semiconductors and LCDs. TOK, as it is commonly referred to in the industry (www.tok.co.jp), also has subsidiaries in the United States, Europe, and several Asian countries.



About CNSE:

The UAlbany CNSE is the first college in the world dedicated to research, development, education, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. In May 2007, it was ranked as the world's number one college for nanotechnology and microtechnology in the Annual College Ranking by Small Times magazine. CNSE's Albany NanoTech complex is the most advanced research enterprise of its kind at any university in the world: a $4.5 billion, 450,000-square-foot complex that attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 65,000 square feet of Class 1 capable cleanrooms. More than 2,000 scientists, researchers, engineers, students, and faculty work on site at CNSE's Albany NanoTech complex, from companies including IBM, AMD, SEMATECH, Toshiba, ASML, Applied Materials, Tokyo Electron, Vistec Lithography and Freescale. An expansion currently underway will increase the size of CNSE's Albany NanoTech complex to over 800,000 square feet, including over 80,000 square feet of Class 1 capable cleanroom space, to house over 2,500 scientists, researchers, engineers, students, and faculty by mid-2009. For more information, visit www.cnse.albany.edu.

####

About SEMATECH
For 20 years, SEMATECH® (www.sematech.org) has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
Erica McGill
SEMATECH | Media Relations
257 Fuller Road | Suite 2200 | Albany, NY | 12203
o: 518-649-1041 | m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Chip Technology

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Does nanoconfinement affect the interaction between two materials placed in contact? It ispossible to estimate how nanoconfinement affects the number of contacts formed by two materials placed in intimate contact and, hence, the interfacial interactions June 7th, 2018

Announcements

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques May 3rd, 2018

Nanobiotix and Weill Cornell Medicine Partner on Pre-Clinical Research Inbox x May 3rd, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project