Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Microfluidic Device Mimics Tumor Microenvironment, Helps Drug Discovery Efforts

Abstract:
One of the challenges that cancer researchers face in designing new antitumor agents is that of predicting how drug molecules will behave in the complex microenvironment that surrounds a tumor. In particular, tumors create all sorts of chemical and physical barriers that limit how much drug is able to enter a tumor, let alone reach cells deep within a tumor. Now, Neil Forbes, Ph.D., and his colleagues at the University of Massachusetts have built a microfluidic device that can mimic these chemical and physical barriers, providing researchers with a new screening tool that may help with the design of more effective anticancer drugs.

Microfluidic Device Mimics Tumor Microenvironment, Helps Drug Discovery Efforts

Bethesda, MD | Posted on February 24th, 2009

Dr. Forbes and his colleagues, who reported their findings in the journal Lab on a Chip, designed this device to reproduce the three-dimensionality of a tumor, including areas of low pH and regions that contain cells resistant to therapy. To create this device, the investigators tested seven different cell growth chamber designs, using various imaging technologies to determine how closely cell masses growing in the device mimicked the behavior of a tumor. From these experiments, the investigators were able to select a growth chamber design that caused cells to grow into tumor masses that displayed heterogeneity closely resembling that of native tumors.

The investigators then used the device to study how doxorubicin, a widely used and widely studied anticancer drug, diffuses into and through a tumor. The device accurately modeled doxorubicin diffusion as seen in humans treated with this drug. The device also was able to recreate the accumulation patterns of anticancer bacteria that actively penetrate a tumor.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics.”

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Microfluidics/Nanofluidics

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Microfluidic devices gently rotate small organisms and cells March 24th, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic