Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Doty receives NSF award for work on quantum dot molecules

UD's Matthew Doty has won a prestigious NSF Career Award for his work in quantum dot molecules.
UD's Matthew Doty has won a prestigious NSF Career Award for his work in quantum dot molecules.

Abstract:
Matthew Doty, assistant professor in the Department of Materials Science and Engineering at the University of Delaware, has received a National Science Foundation Faculty Early Career Development Award for his work on quantum dot molecules.

Doty receives NSF award for work on quantum dot molecules

Newark, DE | Posted on February 20th, 2009

The highly competitive NSF Career Award is bestowed on researchers deemed most likely to become the academic leaders of the 21st century.

The five-year $525,000 award will support not only Doty's research but also hands-on research and curriculum development for K-12 teachers, hands-on exploratory science experiences for K-12 students, and the development of interdisciplinary courses on nanoscale materials for advanced undergraduate students.

Doty explains that quantum dots (QDs) are often referred to as "artificial atoms" because, like natural atoms, they have bound, discrete electronic states. Recent advances in materials science and nanofabrication techniques have made it possible to controllably couple individual QDs to create artificial molecules.

In contrast to natural molecules, however, where the degree of coupling is determined by the electro-negativity of each atom and the spacing between the atoms, in QD molecules (QDMs), the coupling can be engineered.

"This control over quantum mechanical coupling at the level of single electrons and holes opens the door for design of novel materials with revolutionary properties," Doty says.

The applications for this technology include optoelectronic devices such as lasers and sensors, quantum information processing and functional materials.

"For QDMs to be of use in future technologies," Doty says, "we have to understand the signatures and mechanisms of quantum mechanical coupling. This will require identifying their unique properties at the single molecule level while also figuring out how to scale the process up to increase the size of QDM assemblies."

"Progress towards any of these possible applications requires answers to many fundamental questions about the coupling between quantum dots," he adds. "What are the physical mechanisms of coupling? Do particles tunnel between dots or transfer via resonant energy transfer? How do the mechanisms of coupling depend on the material composition of the dots, their spatial separation, their energy levels, or the scaffold that connects the dots? What are the dynamics of interactions between electrons? How can we tune the degree of coupling in situ to create active materials?"

He hopes that his research over the next five years will yield answers to some of those questions.

As a part of the NSF Career program, Doty will host two high school teachers in his lab each summer, in an expansion of UD's ongoing Research Experiences for Teachers (RET) Nature InSpired Engineering (NISE) Program.

He also intends to create a portable experiment demonstrating the application of spectroscopy to materials characterization that teachers can borrow for use in their classrooms.

"In the long term," Doty says, "I'd like to build a library of these types of modules to serve as a resource for middle- and high-school teachers."

Doty joined the UD faculty in 2007 after a three-year stint as a National Research Council research associate at the Naval Research Laboratory. He earned his Ph.D. in physics at the University of California Santa Barbara.

"All of my degrees are in physics, and at the Navy Lab, I worked mostly with physicists and chemists," he says. "The work there was much more basic than most engineering research. But the materials science department here at UD has turned out to be a really good fit for me. If I had joined a physics department, I wouldn't be right down the hall from people doing research on topics like recombinant DNA, organic solar cells, and self-assembly of biological materials. There's a real melding of expertise here that offers a great opportunity to look at problems from many different angles and come up with creative solutions. That's been really exciting for me."

Although the prestigious NSF Career Awards are granted to help young investigators launch their independent research careers, Doty anticipates collaborating with colleagues both here at UD and at other institutions to explore various applications of his work. "You can't do science today by yourself," he says.

Article by Diane Kukich
Photo by Kathy Atkinson

####

For more information, please click here

Contacts:
Office of Communications & Marketing
The Academy Building
105 East Main Street
University of Delaware
Newark, DE 19716 • USA
Phone: (302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Quantum Dots/Rods

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE